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ABSTRACT
Increased attention is paid to the structural components of tissues.

These components are mostly collagens and various proteoglycans.

Emerging evidence suggests that altered components and noncoded

modifications of the matrix may be both initiators and drivers of disease,

exemplified by excessive tissue remodeling leading to tissue stiffness, as

well as by changes in the signaling potential of both intact matrix and

fragments thereof. Although tissue structure until recently was viewed as

a simple architecture anchoring cells and proteins, this complex grid may

contain essential information enabling the maintenance of the structure

and normal functioning of tissue. The aims of this review are to (1) discuss

the structural components of the matrix and the relevance of their mu-

tations to the pathology of diseases such as fibrosis and cancer, (2)

introduce the possibility that post-translational modifications (PTMs),

such as protease cleavage, citrullination, cross-linking, nitrosylation,

glycosylation, and isomerization, generated during pathology, may be

unique, disease-specific biochemical markers, (3) list and review the range

of simple enzyme-linked immunosorbent assays (ELISAs) that have been

developed for assessing the extracellular matrix (ECM) and detecting

abnormal ECM remodeling, and (4) discuss whether some PTMs are the

cause or consequence of disease. New evidence clearly suggests that the

ECM at some point in the pathogenesis becomes a driver of disease. These

pathological modified ECM proteins may allow insights into complicated

pathologies in which the end stage is excessive tissue remodeling, and

provide unique and more pathology-specific biochemical markers.

INTRODUCTION

T
he extracellular matrix (ECM) is of paramount importance

for tissue function, and controls cell phenotype and func-

tion. That was initially illustrated by Mintz and colleagues

who showed that the normal mouse embryonic tissue mi-

croenvironment could repress expression of the tumor phenotype;1,2

thus, the ECM was able to control genotype/phenotype relationships.

These interactions between cells and the ECM components are medi-

ated through receptors, such as integrins and the discoidin receptors.3

To maintain healthy tissue, the ECM must regenerate itself by normal

remodeling, in which old or damaged proteins are broken down in a

specific sequence of proteolytic events and replaced by new proteins.

However, during pathological conditions, such as cancer, fibrosis, and

inflammation, the delicate repair–response balance is disturbed.4,5 The

original proteins of the ECM are replaced by different matrix con-

stituents, and consequently, the composition and quality of the matrix

are altered. During cancer and fibrosis propagation, the ECM may be

stiffened, and this can actually enhance tumor cell migration, myofi-

broblast activation, and collagen deposition,6–14 thereby linking the

actual matrix quality to disease progression.
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During this pathological remodeling of the ECM, excessive levels

of tissue- and pathology-specific turnover products are released into

the circulation. Turnover products holding post-translational modi-

fications (PTMs) are defined as modifications made secondary to

translation of the protein into the peptide sequence from mRNA.

Thus, most PTMs are not directly DNA coded, and are a consequence

of tissue physiology and pathophysiology.15,16 PTMs may be derived

from processes, such as aging (in which amino acid isomerization

occurs), citrullination (during inflammation), protease degradation

(fibrosis and inflammation), and glycosylation (diabetes),15,16 as will

be carefully discussed. Protease-generated neoepitopes have, to date,

received more attention than other PTMs. However, potentially

important PTMs that are believed to be specific for cancer as well

as fibrotic and other pathological conditions have recently been

identified.15,17–19 The PTMs made to proteins result in unique protein

fingerprints.20 These modified structures are prime candidates for

biochemical marker development, as they may be more related to the

pathogenesis than unmodified proteins. Several lines of independent

evidence suggest that PTMs to specific proteins contribute to ab-

normal cellular proliferation, adhesion characteristics, and mor-

phology,21 and may cause many of the differences in cancer tissue

compared to normal tissue.21–26 Furthermore, the generation of

PTMs of key structural proteins, generated by protease cleavage,

citrullination, nitrosylation, glycosylation, and isomerization, is

emerging as a critical factor in tissue homeostasis and remodeling.

Thus, PTM profiles may be used as biochemical fingerprints for de-

tecting and verifying the function and activity of key cellular sig-

naling pathways21–26 involved in tissue homeostasis and integrity.

Additional lines of evidence highlight that the structural compo-

nents of the matrix, after PTM, are central part of the pathogenesis

itself,15 thus highlighting the matrix structural proteins as central

and active participants rather than passive bystanders in disease

pathogenesis.

The aims of this review are to discuss the structural components of

the matrix, the potential applicability to pathology, and the mea-

surement of structural molecules in serum. We review the PTMs,

which may be both a consequence of disease and a part of the

pathogenesis, as exemplified by the role of tissue stiffness in cancer

and fibrosis. Lastly, we list the current methods for measuring post-

translational modified matrix proteins in serum. These PTMs may

serve as disease-specific biochemical markers and assist in the

identification of key molecular pathways leading to enhanced con-

nective tissue remodeling.

FUNCTION OF THE ECM
The ECM is a three-dimensional (3-D) structure that encapsulates

cells and defines their microenvironment.27 It consists of a meshwork

of proteins to which soluble factors, such as growth factors and cy-

tokines, can bind. There are two main types of ECM. The first is the

basement membrane (BM), which interacts directly with the epithe-

lium and endothelium, and it is composed of primarily of type IV

collagen, laminins, entactin/nidogen, and heparan sulfate proteo-

glycans (e.g., perlecan) (Fig. 1).28

The second type is the interstitial matrix, which makes up the bulk of

the ECM in the body. The interstitial matrix consists of many types of

collagens, including types I and III, together with fibronectin. The in-

terstitial matrix additionally consists of tenascin and proteoglycans that

provide tissue hydration, enable binding of growth factors and cyto-

kines to the tissue, and cross-link the matrix to enhance its integrity.29

Although originally considered as merely a support system for the

cells within the tissue, the ECM is now recognized as a central reg-

ulator of cell and tissue behavior via transmembrane signaling.1,30–33

While the basic characteristics and composition of the BM and in-

terstitial matrix are constant across tissues, variations in ECM com-

ponents, such as protein isoform expression, ratio between individual

matrix components, and PTMs, contribute to differences in ECM

organization and structure and ensure tissue specificity.15 PTMs,

such as glycosylation and cross-linking, significantly affect the

mechanical properties of the ECM, including its viscoelasticity or

stiffness. Both the stiffness and topology (3-D appearance) of the

ECM regulate the growth, remodeling, differentiation, migration, and

phenotype of a wide variety of cell and tissue types.8–14,34

MATRIX COMPOSITION AFFECTS
CELL PHENOTYPE

The importance of matrix stiffness in tissue-specific differentia-

tion is exemplified by the fact that cells grown as monolayers (two-

dimensional: 2-D) on top of either a plastic substrate or a glass

coverslip, with or without ECM ligand, fail to assemble the same

tissue-like structures as those growing in the normal ECM (3-D). Cells

growing on plastic or glass are less likely to express differentiated

proteins upon stimulation,34 or respond to growth factors or protease

inhibitors in the same way as cells growing in a 3-D setting.35 These

phenotypic disparities can be explained, in part, by the fact that

Fig. 1. The molecular structure of a typical basal lamina. The basal
lamina is formed by specific interactions between the proteins type
IV collagen, laminin, and entactin plus the proteoglycan Perlecan.
Adapted by S.H. Madsen, from Yurchenco and Schittny.28
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living tissues in 3-D emit biological signals that may be read by

specific integrins, but this signaling is nonexistent in 2-D substrata

such as tissue culture on plastic. The role of cell polarity versus

non-polarity in cultures is receiving increased attention. Another

illustration of this phenomenon is that when epithelial cells and

melanocytes are grown in a 3-D ECM microenvironment, they

assemble into tissue-like structures and express differentiated

proteins when given the correct soluble stimuli.36 Neither behavior is

seen when the same cells are cultured on 2-D plastic substrata.

The architecture of the interstitial matrix in vivo also differs sub-

stantially from that found typically in tissues cultured on plastic, and

this too can have dramatic effects on cell behavior.35 For instance,

osteoblasts grown on plastic in 2-D do not rely on matrix metallo-

proteinases (MMPs) for survival, whereas osteoblasts embedded in an

interstitial matrix, such as 3-D type I collagen, are critically depen-

dent for their survival on MMP activation of latent transforming

growth factor (TGF)-b.35 Thus, the matrix architecture is crucial to

the phenotype and survival of cells. Interestingly, the orientation of

collagen fibers can critically regulate cell and tissue behavior.37–39

This 3-D contextual information is lost when cells are grown in 2-D.

Varying components of the ECM also influence the ability of the

matrix to regulate cell and tissue behavior. The ECM transmits signals

through various specialized cell membrane receptors, including

integrins, discoidin domain receptors (DDRs), and syndecans.40–44

Integrins provide an excellent model of how an altered ECM

could promote tumor progression. Integrins consist of 24 distinct

transmembrane heterodimers that relay cues from the surrounding

ECM to regulate cell growth, survival, motility, invasion, and

differentiation.40–44 They are able to interact with the ECM exter-

nally, and with cytoplasmic adhesion plaque proteins and the cyto-

skeleton intracellularly to influence cell behavior. Integrin–ECM

interactions regulate the cell fate by activating multiple biochemical

signaling circuits and altering the cell shape.45,46 This occurs either

through direct interactions between ECM receptors and actin-

linked proteins or cytoskeletal reorganization induced by activating

cytoskeletal-remodeling enzymes, such as RhoGTPases.45,46

This section highlights that the composition of the ECM affects the

phenotype of cells through specific receptor-mediated interactions.

Certain ECM compositions and structures result in a context-

dependent response to a given stimulus, which is absent in other

experimental settings.

ECM PROTEINS
The ECM mainly consists of collagens and proteoglycans, each with

their unique function. In the following section, the most important and

well-investigated collagens and proteoglycans are discussed, together

with other important structural components of the ECM.

Collagens
Collagens are a family of proteins made up of three a-chains su-

percoiled around each other completely or partially in a triple helix

with a characteristic Gly-X-Y repeat. Intra- and intermolecular cross-

links bring stability to the collagen molecules, contributing to the

characteristically high tensile strength and minimal extensibility of

collagen. Type I, II, III, and V collagens belong to the group of fibrillar

collagens, which are the most abundant collagen group in the body.

In addition to the triple-helical domain, they also contain N- and

C-terminal propeptide domains that are cleaved off by N- and C-

procollagenases, respectively, before fibril assembly.47 Type I–VI

collagens are the most well described at present and are the focus of

this section.

Type I collagen. Type I collagen is composed of the heterotrimer

a1a1a2(I) and is the most abundant type of collagen that is ubiqui-

tously expressed. It provides tensile stiffness in bone and has im-

portant load-bearing, tensile strength, and stress-carrying properties

in other tissues as well. In tendons, type I collagen fibrils are arranged

in parallel to form bundles, whereas in skin, the arrangement is more

random, forming a complex network of interlaced fibrils. These

different arrangements contribute to the different properties of the

tissues. Type I collagen is often incorporated into fibrils with either

type III48 or type V collagen.49 The synthesis, concentration, and

circulating levels (serum concentration) of degradation products of

type I collagen have been proven to be increased during breast, bone,

lung, ovarian, prostate, and skin malignancy.50–55

Type II collagen. Type II collagen is the major component of hyaline

cartilage, but is also found in the vitreous body of the eye, the corneal

epithelium, the notochord, the nucleus pulposus of invertebral discs,

and embryonic epithelial-to-mesenchymal transitions (EMTs).47

Type II collagen is a homotrimer consisting of three a1(II) chains, and

the primary sequence has a high content of hydroxylysine and gly-

cosyl residues, which mediate interactions with proteoglycans, an-

other important component of hyaline cartilage. Type II collagen

degradation is mainly associated with rheulatological diseases such

as osteoarthritis and rheumatoid artiritis.56

Type III collagen. Type III collagen is mainly present in association

with type I collagen and is an important component of the interstitial

tissues of the lung, liver, dermis, spleen, and vessels. Type III collagen

is a homotrimer consisting of three a1(III) chains. A characteristic

feature of type III collagen is that it is correlated to extensibility of

tissues, and that it may contribute to elasticity, a property that is

uniquely connected to this type of collagen.57 Type III collagen has

been mostly assiociated with various fibrotic diseases.58–61

Type IV collagen. Type IV collagen is the main component of the BM,

a specialized type of ECM that separates the epithelium from the

stroma in all tissues in the body. It consists of three domains:

N-terminal 7S domain, a central triple helix, and a large C-terminal

NC1 globular domain. Its triple helix is*25% longer than those seen

in the fibrillar collagens, and the Gly-X-Y repeat is frequently in-

terrupted, accounting for the relatively high flexibility of this type of

collagen.28 Instead of fibrils, type IV collagen molecules assemble

into a flexible 3-D network. The most abundant isoform of type IV

collagen is a1a1a2(IV), but tissue-specific isoforms also exist:
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a3a4a5(IV) heterotrimers are found in the lung, glomeruli of the

kidney, cochlea, eyes, and testis, whereas a5a5a6(IV) is found in skin,

Bowman’s capsule of the kidney, the esophagus, and the knee joint.62

Turnover of the basement membrane is associated with a range of

diseases.

Type V collagen. The most common structure of type V collagen is

a1a1a2(V), although homotrimers of three a1(V) chains and hetero-

trimers of the a1a2a3(V) isoforms have also been detected.63 Type V

collagen is expressed in tissues containing type I collagen, but is a

quantitatively minor component.64 It typically forms heterofibrils

with type I collagen,49,64 where it makes up the core structure of these

heterotypic fibrils. Type V collagen is of special importance for the

structure of tissues. It has been shown to be essential for the correct

assembly of collagen fibrils and to regulate their size and organiza-

tion.65 This characteristic makes type V collagen especially unique

and interesting to study. The N-terminal domain contains a high level

of tyrosine sulfated residues that contribute to the strong interactions

that type V collagen has with triple-helical domains of other collagen

types. This enhances the stability of fibrils.66

Type VI collagen. Type VI collagen is a heterotrimeric molecule with

the isoform a1a2a3(VI) and consists of a short triple helix flanked by

two extended globular domains, and it is expressed, albeit variable, in

virtually all tissues. The primary fibrils are arranged in overlapping

dimers in an antiparallel manner and form parallel tetramers that

are stabilized by intermolecular disulfide bonds. They aggregate to

form filaments and an independent microfibrillar network. Type

VI collagen molecules have a uniquely beaded appearance and

interact with several ECM components such as type I collagen and

fibronectin.67

Proteoglycans
Proteoglycans are ECM macromolecules formed by a protein core

with one or more glycosaminoglycans (GAGs) bound covalently. Due

to the negative charge and structural conformation of GAGs, pro-

teoglycans can interact with a large variety of macromolecules.68

Proteoglycans can be divided into five families according to the

structural properties of their core protein.69,70

The small leucine-rich proteoglycan (SLRP) family is formed by

proteoglycans that bind specifically to other ECM constituents and

contribute to the structural framework of connective tissues. SLRPs

are small molecules, with core proteins of 40 kDa, and possess

characteristic 6–10 leucine residuces at conserved locations between

the flanking cystein-rich disulfide-bonded domains at the N- and

C-terminus that participate in protein–protein interactions with col-

lagens, matrix glycoproteins, and cell membrane components.70,71

Based on several parameters, including gene organization and amino

acid homologies, SLRPs are further divided into five classes: class I

includes decorin, biglycan, and asporin; class II includes fibromodulin,

lumican, keratocan, proline arginine-rich end leucine-rich repeat

protein (PRELP), and osteoadherin; class III includes epiphycan, mi-

mecan, and opticin; class IV includes chondroadherin and nyctalopin;

and class V includes podocan.69,72

Decorin, fibromodulin, asporin, lumican, PRELP, and chon-

droadherin can interact with collagen and influence collagen fibril

formation and interaction.69 In addition to their ECM functions in

tissue hydration and collagen fibrillogenesis, proteoglycans are able

to influence tissue repair and tumor growth, to facilitate cellular

adhesion, proliferation, and migration, and to modulate growth

factors and cytokine activities. For this reason, they are referred to as

matricellular protein, with the ability to modulate cell–matrix in-

teractions and cell functions.72 In particular, decorin, biglycan, and

lumican exert many modulation roles in different biological pro-

cesses. These functions highlight the important effect of ECM com-

ponents in the cellular phenotype by influencing cell communication

through, that is, signal transduction, cytokine modulation, adhesion,

and migration.72 All the different matricellular functions exerted by

these three important SLRPs are detailed in Table 1.3,73–118

Some of the most important proteoglycans expressed in the ECM

are briefly described in the following paragraphs.

Aggrecan. Aggrecan is the major proteoglycan of the cartilage, and

it is the most highly glycosylated, with 150 chondroitin sulfate and

keratan sulfate GAGs bound to a large central core protein. Through

its specific binding with hyaluronan and link protein, it forms

a supramolecular structure whose characteristics make it able to

retain water molecules in the cartilage, providing the tissue with

the property of resisting compressional forces with minimal

deformation.69

Versican. Versican is a large interstitial chondroitin sulfate proteo-

glycan. It is present in many tissues, and it is one of the principal

ECM components of normal blood vessels where it influences the

assembly of ECM and controls elastic fiber fibrillogenesis.119 It is

present in the intima and adventitia of most arteries and veins, and it

is synthesized by vascular smooth muscle cells as well as endothelial

cells, myofibroblasts, and macrophages.120 Versican interacts with

hyaluronan and link protein to form high molecular weight stable

aggregates. These complexes create a reversibly compressive com-

partment and provide a swelling pressure within the ECM that is

compensated by collagen and elastic fibers. Dramatically increased

levels of versican have been observed in atherosclerosis and rest-

enosis, implying that this proteoglycan is a specific component of

developing lesions and contributes to their progression in athero-

sclerosis and restenosis.119

Perlecan. Perlecan is a heparan sulfate proteoglycan widely dis-

tributed in BMs, and it has the largest core protein found in proteo-

glycans. It is able to self-associate or interact with several other BM

macromolecules, including laminin and type IV collagen.68

Decorin. Decorin is the most abundant SLRP in cartilage. It contains

one GAG chain, often dermatan sulfate, which can adopt complex

secondary structures and form specific interactions with matrix
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Table 1. The Matricellular Effects of Extracellular Matrix Components

Protein or PTM Cellular phenotype Responsible receptor Reference

Elastin-derived peptides Chemotaxis of monocytes, fibroblasts, and endothelial cells Elastin-binding protein in complex

with protective protein/cathepsin

A and neuraminidase-1

73,74

Proliferation of fibroblasts and smooth muscle cells

Protease release from fibroblasts and leukocytes

Thrombospondin Inhibition of angiogenesis CD36 and CD47 75–77

Type I collagen Fibroblast migration DDR2; integrins a1, a2, a10,

a11, and b1

3,78

Acetylated Proline–Glycine–Proline

(acPGP; fragment of type I collagen)

Neutrophil chemotaxis CXCR1 and CXCR2 79,80

Arresten, canstatin, and tumstatin

(fragments of type IV collagen)

Inhibition of angiogenesis, tumor growth, and endothelial cell

proliferation and migration.

Various integrins 81,82

Induction of apoptosis

Endostatin (fragment of collagen

type XVIII)

Inhibition of endothelial proliferation, angiogenesis, and tumor growth Glypicans, nucleolin 83–86

Induction of endothelial cell apoptosis

RGD motif (present in collagens,

laminin, and fibronectin)

Cell adhesion, angiogenesis, and apoptosis Various integrins 87,88

Fibromodulin Proliferation, migration, and chemotaxis of HSCs Unknown 89

Laminin-332 (elastase-generated

fragment of g2)

Neutrophil chemotaxis Unknown 90

SIKVAV and ASKVKV (sequences in

linker regions between coiled-coil

and globular domains of laminin

a1 and a5 chains)

Neutrophil and macrophage chemotaxis Unknown receptors; SIKVAV

interacts with integrins a1, a6,

and b1 in the salivary gland

carcinoma cell line

91,92

Laminin Chemotactic migration of malignant cells toward laminin 67LR (LamR) 93,94

Lumican Regulation of inflammation and innate immunity CD14, FasL, CXCL1 95–98

Apoptosis induction Fas

Biglycan Regulation of inflammation and innate immunity TLR2, TLR4, P2X4/P2X7,

selectin L/CD44, C1q

99–110

Cytokine modulation (PDGF, TGF-b, TNF-a, WISP-1, BMP-4)

Adhesion and migration RhoA, Rac1

Decorin Signal transduction LRP-1, c-MET 102–106,

110–118
Cytokine modulation (PDGF, TGF-b, TNF-a, VWF, and WISP-1)

Regulation of inflammation and innate immunity TGB-b, C1q

Antiapoptotic effect. IGF-IR

Antioncogenic effect. EGF-R, VEGF-R2,

Adhesion and migration IGF-IR, integrin a2b1, RhoA, Rac1

PTMs, post-translational modifications; HSC, hepatic stellate cell; PDGF, platelet-derived growth factor; TGF, transforming growth factor; TNF, tumor necrosis factor;

VEGF, vascular endothelial growth factor.
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molecules. Its level increases with age. Its main function is to regu-

late collagen fibrillogenesis and to maintain tissue integrity by its

binding with fibronectin and thrombospondin.69 However, decorin

also exerts important matricellular functions, favoring the cell–

matrix interactions and influencing cell phenotype (see Table 1).

Decorin is an important antifibrotic agent: it influences fibrogenesis

in different organs by inhibiting TGF-b; it regulates ECM synthesis

and turnover, and it is involved in regulation of cell death, adhesion,

and migration.72

Biglycan. Biglycan is a small SLRP. It is found in many connective

tissues, such as skin, bones, and blood vessels. Within the hyaline

cartilage tissue, biglycan is localized mainly pericellularly.70 To-

gether with decorin, biglycan is a key regulator of the lateral as-

sembly of collagen fibres, and it interacts primarily with type VI

collagen.69 Biglycan is thought to have a role also in fibrogenesis and

in assembly of elastin fibers.121 Moreover, this proteoglycan is able to

bind to the membrane-bound proteoglycan, dystroglycan, and to a

wide variety of proteins. It is involved, for instance, in cell signal

transduction during cell growth and differentiation and in regulating

cytokine activity through its capacity to bind TGF-b and tumor ne-

crosis factor (TNF) a (see Table 1).99

Mimecan. Mimecan is a keratan sulfate proteoglycan belonging to

the SLRP family, and it is the product of the gene that encodes for

osteoglycin.122 Its main role consists in regulating the collagen fibril

diameter.123 Apart from corneal tissue, where it has been first iden-

tified, mimecan is expressed also in other tissues, such as medullary

bone,124 amniotic membrane,125 cartilage126 and pituitary.127 In the

lung, mimecan mRNA expression is correlated to nonsmall-cell lung

cancers,128 and in arteries, there is an indication that it can be in-

volved in arterial remodeling during atherosclerosis.129

Fibromodulin. Fibromodulin is one predominant SLRP in cartilage. It

contains up to four keratan sulfate chains, and it is able to influence

collagen fibril formation and maintain a sustained interaction with

the formed fibrils.69,130

Lumican. Lumican is a highly biologically active SLRP. It can exist

as proteoglycan (with GAG chains) and as glycoprotein (with mono-

or polysaccharide chains). In the human adult cornea, it is present in

the first form, whereas it is in a glycoprotein form in embryonic

cornea and in skin. Lumican expression in cornea has been widely

studied. In this tissue, it exerts its main role in controlling the poly-

merization of collagen into small-diameter fibrils.131 Lumican is

also highly present in skeletal muscle, kidneys, placenta, heart, in-

tervertebral discs, blood vessels, intestine, uterus, and pancreas,71

and it has a widespread distribution in connective tissues, including

cartilage, where it modulates collagen fibrillogenesis and regulates

the assembly and diameter of collagen fibers and interfibrillar

spacing, enhancing collagen fibril stability.132 Together with decorin

and biglycan, it is an important component of the ECM exerting

matricellular functions (see Table 1).

Other proteins. The glycoproteins fibronectin and tenascin C mod-

ulate the integrin-mediated adhesion of cells to other ECM proteins,

such as collagens, and as such play a key role in cancer invasion. A

single gene encodes fibronectin, but alternative splicing allows for-

mation of multiple isoforms from which some are tumor specific.133

The fibulins, Galectin-1 and Fibulin-1, function as intramolecular

bridges in the organization of ECM supramolecular structures, such

as elastic fibres and BMs.134 Galectin-1 and Fibulin-1 can bind ECM

components, that is, laminin and fibronectin, and therefore modifies

the adhesive properties of cancer cells.134–136

Effect of Structural Proteins on Cellular Phenotype:
Selected Examples

There is growing evidence that ECM molecules have functions

other than structural roles, but as integrated players in the structure

and functional homeostasis of tissue. A nonexhaustive list of these

proteins is given in Table 1. This highlights that ECM proteins are

beginning to be recognized as paracrine-signaling molecules, with

profound effects on cellular phenotypes that until recently was re-

stricted to cytokines, growth factors, and hormones.137 Of particular

relevance, which will be discussed later in this review, some proteins

do not change cellular phenotypes in their native conformation,

whereas subsequent to a specific PTM, a highly potent and novel

function of that protein is revealed. A well-thought example of such

cryptic sites is RGD sequences that are either exposed by protease

digestion in most collagen species87 or even more scholarly exem-

plified by endostatin, which is a fragment of collagen type XVIII that

by cleavage becomes possibly the most powerful anti-angiogenic

molecule to date.83

Table 1 lists examples from outstanding research groups which

serve to highlight that the matrix encompasses strong signaling

motifs that may be revealed during the pathological process. Con-

sequently, the matrix molecules themselves, in addition to cytokines,

growth factors, and hormones, become essential players in tissue

homeostasis. As the ECM molecules both anchor cells in the right

spatial distribution and cell orientation, these structural components

may have a dual effect due to their emerging signaling roles.

ECM REMODELLING IN CANCER AND FIBROSIS
Cancer and fibrosis share a number of abnormal characteristics of

the ECM structure and function, including constitutively high matrix

degradation, formation, and turnover. Interestingly, both diseases

involve aspects of inflammation and matrix assembly, destruction,

and disorganization.24,138,139 As illustrated in Figure 2, cancer cell

metastasis results in extensive ECM remodeling (ECMR), resulting in

the release of matrix components, including neoepitopes, into the

circulation. ECM components and remodeling enzymes are known to

be elevated in the circulation of cancer patients.140,141

The architecture of the tumor-associated ECM is fundamentally

different from that of the normal tissue stroma.142 As an example,

type I collagen is situated parallel to the epithelial cells in healthy

tissue, but is less organized in the stroma surrounding metastases.143

These stromal changes to the ECM promote transformation, tumor
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growth, motility, and invasion; enhance cancer cell survival; enable

metastatic dissemination; and facilitate the establishment of tumor

cells at distant sites.143 Cancer is caused when the essential rules

governing how cells should be organized in a stable manner within

all living tissue are disregarded. Uncontrolled cell growth is neces-

sary for cancer formation. Such growth becomes self-directed,

leading to a disorganization of the normal tissue architecture, which

is known as neoplastic transformation. More than 90% of malignant

tumors are epithelial tumors,4 occurring where there is a collapse in

the boundary between the epithelial and connective tissues that en-

compass a given organ. Interruption of these tissue boundaries pro-

motes cancer cell migration to nearby blood vessels or the lymph

node system, enabling the cells to metastasize to remote organs re-

sulting in multiorgan failure and death.

Fibrosis is an end-stage representation of a repair–response pro-

cess after an injury. Like cancer, it may lead to serious organ damage.

The development of liver fibrosis resembles the process of wound

healing, including the three essential phases after tissue injury: in-

flammation, synthesis of collagenous and noncollagenous ECM

components, and tissue remodeling. Fibrosis may begin in response

to various acute or chronic stimuli, including infections, autoim-

mune reactions, toxins, radiation, and mechanical injury.144 The

pathogenic process driving fibrogenesis is believed to be a dynamic

series of events involving complex cellular and molecular mecha-

nisms evolving from the acute or chronic activation of tissue repair

that follows repeated tissue injury,5 In the case of liver fibrosis, these

stimuli give rise to a series of events that involve several cell types

working in synergy toward irreversible damage of the liver.145

Identification and characterization of the

cell types and the different mediators in-

volved in liver fibrogenesis have expanded

significantly during recent years.146–148

Hepatic stellate cells (HSCs) have been

identified as the driving force of liver fi-

brosis. When HSCs are activated by in-

flammatory mediators,149 they differentiate

into hepatic myofibroblast-like cells

(hMFB) capable of expression and secretion

of several connective tissue components

(for example, collagens, elastin, proteogly-

cans, and hyaluronan).149,150 HSCs are

believed to be the main source of ECM

proteins accumulated in the liver during

chronic liver disease. Recent research has

clearly demonstrated that other cell types

contribute to the hMFB-pool.151–153 These

cells can come from local sources such as

portal myofibroblasts154 or, may be, newly

formed HSCs that originate from a process

called EMT, in which biliary epithelial cells

or hepatocytes transform into fibro-

blasts.155 In addition, contributions to the

hMFB-pool come from outside the liver

from cells like bone marrow156 and circulating fibrocytes.157 The

bone marrow-derived myofibroblasts have been shown to be of a

surprisingly large importance, as they can transdifferentiate into

epithelial cells.158–161 The accumulation of fibrous tissue and myo-

fibroblast contraction in the liver leads to mechanical increase of

hepatic vascular resistance to portal vein blood.159,162 This in turn

leads to loss of oxygen to the surrounding tissue, facilitating

neoangiogenesis as HSCs and Kupffer cells begin overexpressing

proangiogenic growth factors and cytokines.163

The activation of HSCs involves multiple intracellular pathways

and gene regulation. Regulation of growth factors plays an important

role in HSC activation, with platelet-derived growth factor (PDGF)

signaling is the best-characterized pathway leading to HSC activation.

Binding of PDGF results in dimerization and phosphorylation of the

tyrosine residues in the intracellular domain of the receptor. This acti-

vates the Ras/MAPK and the PI3K-AKT/PKB pathways, leading to cel-

lular proliferation.164 The increased matrix production by HSCs is

controlled by TGF-b, which is the most potent fibrogenic cytokine in the

liver, by signaling via Smad proteins.165 Chemokines induce the NFkB

signaling pathway, leading to further migration and proliferation of

HSCs. Continued deposition of matrix proteins is controlled by a positive

feedback loop that sustains the inflammatory response and proliferation

and migration of HSCs as chemokines interact with immune cells.166,167

Disregulation of ECM homeostasis is also central in the develop-

ment of fibrosis of the lung, although the origin of fibrogenic pre-

cursors remains a subject of debate, and is potentially multifactorial

in nature. Activation of resident fibroblasts, recruitment of circu-

lating progenitors such as fibrocytes or other candidate progenitors,

Fig. 2. Schematic representation of the high extracellular matrix remodeling in fibrosis. All
steps involve extracellular matrix (ECM) remodeling that generates unique protein degra-
dation fingerprints. These enzymes degrade the ECM, releasing smaller fragments of protein
from the ECM into the circulation. Interestingly, many of the same processes occur in both
fibrosis and cancer.
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and EMT of alveolar epithelia have all been implicated in the for-

mation of activated myofibroblasts168–172 in the lung. Consistent

with findings in fibrotic liver disease, these activated myofibroblasts

produce fibrillar collagens such as type I collagen and other matrix

proteins, which apart from promoting remodeling and ultimately

scarring the lung parenchyma, drive a sustained cycle of ongoing

fibrogenesis, even in the absence of ongoing inflammatory insult. As

with liver fibrosis, studies in disease models indicate that TGF-b is a

key fibrogenic cytokine. Together with other cytokines, signaling

pathways, and matrix proteins, TGF-b contributes to the ongoing

disease cascade and destructive remodeling of the lung.172–178

As a biomechanically sensitive organ, the lung could be consid-

ered as particularly dependent on the composition and architectural

organization of ECM components, including BM collagens such as

type IV collagen, structural fibrillar collagens (type I and III), and

elastin.179 The importance of collagen remodeling in resolution of

fibrosis has been demonstrated in models in which inhibition of the

lysyl oxidase (LOX) family member, LOXL2, which catalyzes the

cross-linking of fibrillar collagen, and thereby increases tissue ten-

sion, was sufficient to reverse established fibroblast activation and

reduce TGF-b signaling, cytokine production, inflammation, and

other markers of profibrogenic imbalance.14 These findings are

consistent with previous data showing that ongoing myofibroblast

activation and TGF-b signaling from the latency-associated complex

can be driven by altered mechanical tension in a feed-forward

loop.180,181 Selective inhibition of LOXL2, which is overexpressed in

both human fibrotic disease and disease models, may also constitute a

therapeutic target. Inhibition of aberrant fibrogenesis, while avoiding

inhibition of other LOX family members, such as LOX and LOXL1, may

play a critical role in elastin homeostasis in the lung.182,183

Studies in humans and in animal models have suggested that some

elements of fibrosis are reversible, and in specific circumstances, res-

toration to near-normal organ architecture can be achieved.184–189

Consequent to these findings is an emerging interest in the fibrosis

field with focus on the ECM components. Measurement of the indi-

vidual molecules gives a deeper understanding of fibrosis and atten-

uates pathological processes.

Noninvasive biomarkers of liver fibrosis have been sought for

decades, and the FibroTest multimarker panel is approved for clinical

usage in Europe. However, all of the current markers and panels have

limitations,190 and none have been recommended by the American

Association for the Study of Liver Disease (AASLD) to replace liver

biopsy.191 Clearly, novel markers are still needed, and measuring

neoepitopes of ECM proteins composes a snapshot of matrix dy-

namics that may be of diagnostic and prognostic value.192 Examples

of well-studied liver ECM markers include collagen propeptides,

notably PIIINP,193 and caspase fragments of cytokeratin 18.194 A

recent mass spectrometry study of the ECM in two rodent models

identified 16 different collagens in the liver, and profiled changes in

the abundance of collagens and integrins in tumors compared with

healthy livers and precancerous fibrotic livers.195 Neoepitopes of

these proteins may serve as valuable markers of liver ECMR. Pro-

mising candidates have been reported, including those derived from

type IV collagen,196,197 type I collagen,198 type V collagen,199 and

type VI collagen.200 Systemic approaches, such as global profiling of

serum glycoproteins, have also been utilized,201 and this technique is

now being validated in rodent models (e.g., Fang et al.,202 Blomme

et al.,203) and in additional cohorts of liver disease patients.204,205

A range of diseases involve excessive matrix remodeling in spe-

cific matrices. For example, in rheumatoid arthritis the turnover of

type I, II, and III collagens are highly upregulated in the cartilage and

synovium.206 The high turnover of ECM proteins are also found in

other diseases, such as:

. osteoarthritis affecting the articular cartilage (type II collagen

and aggrecan)56

. metabolic bone diseases (type I collagen)138,207–210

. sarcopenia (type VI collagen)211–213

. cancer (basement membrane and desmoplasia)4,33,214–216

. atherosclerosis (type I and III collagens, titin and versican)217

. various fibrotic diseases including liver (type I, III, IV, V, VI

collagens and biglycan),59–61,144,196,197,199,200,218 lung (elastin,

type I, III, and V collagen),74,220–232 and kidney.233

Key lessons on the importance of the structural components of the

matrix may be harvested from the genetic mutations that lead to

pathologies. Table 2 contains a summary of key structural pro-

teins and their known mutations leading to matrix and tissue fail-

ure.224,233–271 These disease phenotypes provide pivotal information

on proteins important for tissue function, and thus how they are

involved in some pathologies of nongenomic disorders, and sub-

sequently how treatments that affect these proteins may counter

disease progression.

PTMS IN THE ECM
PTMs are non-DNA-coded modifications to the composition or

structure of proteins, which generate unique parts of a molecule

known as neoepitopes.17 Pathologically relevant protein modi-

fications are not restricted to protease activity, although the sub-

population of neoepitopes generated through this mechanism may be

of paramount importance. Figure 3 depicts a handful of different

types of PTMs. Some have been identified and used as biochemical

markers as a measure of the disease activity,272 but also as contri-

butions to disease process,17 as they change the functionality of the

proteins.

One Gene, 1,000 Protein Subtypes
The importance of PTMs is best described by the fact that one gene

may result in 1,000 different and unique proteins with different

functional implications. This is illustrated in Figure 3. Here, modi-

fications to amino acids by specific PTMs or degradation of the

protein result in both immunologically different as well as func-

tionally different proteins. Measurement of the same protein may

provide highly different information, such as either protein forma-

tion or protein degradation, which obviously entails opposite infor-

mation. Some pathologies may further modify the protein

specifically, and thus give a specific protein fingerprint of pathology
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such as glycosylation of hemoglobin resulting in HbA1c

type I diabetes.273 A long line of evidence suggests that

measurement of the intact protein provides some infor-

mation, and measurement of one of these subforms of

a protein provides different and more pathologically-

relevant information. These have been carefully de-

scribed for C-reactive protein (CRP),274 type I and XVI

collagens,275,276 osteocalcin,277 and a selection of other

analytes. Thus, it is becoming increasingly clear that

measurement of a given pathologically-modified protein

enables refinement of clinical chemistry and diagnostic

procedures. Most likely the best example is hemoglobin,

in which the modification of glycosylation is the gold

standard marker of diabetes; thus, the intact protein is a

necessity of life, whereas the PTM-modified protein is a

pathology-specific marker.

As will later be described in larger molecular detail,

many amino acids are amenable to specific modifications

(citrullinations, phosphorylations, acetylations, methyl-

ations, nitrosylations, and glycosylations17). These

modifications can have both positive and negative im-

pacts on the function of the protein, and even target the

protein for degradation. In addition, many proteins are

born with a propeptide that needs to be cleaved before the

protein is in the active configuration that being enzy-

matic activity or structural enablement. Both N- and C-

terminal propeptides are present, which may be further

modified, and thus is a waste underestimation of the

complexity of these peptides. The degradation prod-

ucts of proteins may be the specific action of pathological-

specific enzymes, and there is an accumulating amount of

evidence suggesting that different fragments of the same

protein may have different physiological and patho-

physiological meanings.278 Lastly, polymerization may

both be understood as aggregates of the same protein such

as hyperphosphorylated Tau or cross-linked collagens,

but also pentameric CRP. Each of these subpools obvi-

ously holds unique information.

Cross-Linking
Cross-linking plays an important role in the ECM

meshwork and thereby in tissue integrity. Cross-linking

between different ECM components or between different

protein chains can result from enzymatic and nonenzy-

matic pathways. Enzymatic cross-linking is often pro-

cessed by members of the LOX enzyme family, whose

members have been shown to promote the linearization

of interstitial collagens which stiffen the tissues, thus

leading to neoplastic progression of tumor cells.280–283

Interestingly, this matrix stiffness was associated with

different phenotypes and enhanced mechanorespon-

siveness of the epithelium.280,281 Therefore, cross-linking

plays an important part in both the initiation and

Table 2. Genetic Mutations in Structural Proteins Leading
to Distinct Pathologies

Protein Disease Reference

Type I collagen Osteogenesis imperfecta, Ehlers-Danlos syndrome

type VII

234,235

Type II collagen Several chondrodysplasias, osteoarthritis 236–239

Type III collagen Ehlers-Danlos syndrome type IV, aortic aneurysms 240,241

Type IV collagen Kidney fibrosis, Alport syndrome 233,242–244

Type V collagen Ehlers-Danlos syndrome type I and II 245,246

Type VI collagen Bethlem myopathy, Ullrich congenital muscular

dystrophy

247

Type VII collagen Epidermolysis bullosa dystrophica 248

Type IX collagen MED 249

Type X collagen SMCD and Japanese-type SMD 250,251

Type XV collagen Cardiac and muscle phenotypes 243

Yype XVII collagen Growth retardation 243

Type XVIII collagen Renal filtration defects 243

Elastin Lung, skin and arterial defects, SVAS, WBS, CL 224,252,253

Laminin Alport syndrome 233

Biglycan Cardiovascular disease, osteoporosis 254–256

Biglycan/decorin Osteopenia and skin fragility 257

Biglycan/fibromodulin Osteoarthritis 258

Perlecan Multiple developmental defects and myotonia.

Schwartz-Jampel syndrome

243

Nidogen 1 and 2 Lung and kidney development 243

Fibromodulin Osteoarthritis 259

Lumican/fibromodulin Joint laxity and impaired tendon integrity 260,261

Lumican Reduced corneal transparency and skin fragility 262

Decorin Intestinal tumor; skin fragility; Ehlers-Danlos

syndrome-like.

263–265

Mimecan Colorectal cancer early formation 266

Fibrillin Marfan syndrome 267

COMP PSACH and MED 268–270

Matrillin-3 MED 271

MED, multiple epiphyseal dysplasia; SMCD, Schmid-type metaphyseal chondrodysplasia;

SMD, spondylometaphyseal dysplasia; SVAS, supravalvular aortic stenosis; WBS, William-

Beuren syndrome; CL, cutis laxa; COMP, Cartilage oligomeric matrix protein; PSACH,

pseudoachondroplasia.
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progression of metastasis. Similarly, in fibrotic disease, increases in

tissue tension mediated by cross-linking can lead to activation of

TGF-b signaling from the latency-associated complex and other

signaling changes, driving a fibrogenic feed-forward loop.

Valuable assays for evaluation of bone- and cartilage-related

diseases have been developed using antibodies highly specific for

protease-cleaved sites in type I collagen276 and type II collagen,284

respectively. The antibodies in these assays also assess the cross-

linking between the lysines in the epitopes. C-terminal telopeptide of

type I collagen (CTX-I) is an 8-amino acid fragment from the C-

telopeptide of type I collagen generated by cathepsin K activity, and

the rate of its release from bone is a useful reflection of the resorbing

activity of osteoclasts.285 Measuring this fragment is useful for the

evaluation of treatment efficacy in bone diseases such as osteopo-

rosis.286 The CTX epitope contains an aspartylglycine motif (DG) that

is prone to spontaneous isomerization. In other words, EKAH-

D(a)GGR epitopes are released during degradation of newly syn-

thesized type I collagen, whereas EKAHD(b)GGR epitopes are

released from matured type I collagen. It has been established that

the a/b ratio is a useful measure of the age of bone tissue;287–289

the lower the ratio, the older the bone tissue.290 Further, the lysine

residue of the CTX residue is cross-linked. Figure 4 outlines sche-

matically how assessment of both a cross-linked and cathepsin

K-degraded epitope may be undertaken through the use of sandwich

enzyme-linked immunosorbent assay (ELISA) technology. Addi-

tional ECM assays may be constructed by a similar approach, to

include as much possible information of protein subtype as possible.

Resorption rates of newly synthesized collagen type I can be assessed

by specific immunoassays targeting the detection of aCTX in urine

samples.291 Degradation rate of matured, isomerized collagen can be

estimated by another specific assay targeting bCTX in both urine and

serum samples.276

Another way of cross-linking is through the actions of tissue

transglutaminases (TGs). They play a fundamental role in tissue

stabilization by transamidation of glutamine residues of one protein

chain to the amino group of a lysine residue in a second protein

chain. This results in the formation of the covalent N-g-glutaminyl-e-
lysyl-isopeptide bond, which is resistant to proteolytic degradation.292

As several ECM proteins, such as collagens, fibronectin, laminin, and

vimentin, act as substrates for TGs, they are involved in physiologic

tissue integrity while being associated with various pathologies, in-

cluding neurodegenerative diseases, cancer, inflammation, and fi-

brosis. In fibrosis, TGF-b promotes activation of TG cross-linking,

thereby reducing the ECM turnover, leading to deposition and ac-

cumulation of ECM proteins, and thus stabilizing the ECM network

and facilitating proteolytic resistance. In cancer, intracellular cross-

Fig. 3. Schematic figure of the modifications made to a protein that
causes unique subpools to be generated, which each may entail
specific pathological or physiological information.

Fig. 4. Development of an assay to detect a cancer-specific double
neoepitope. (A) An enzyme, most likely an MMP, cleaves collagen
molecules. This produces a cut in the peptide sequence, exposing
an N- and C-terminal-truncated molecule. (B) Lysil oxidase family
members are highly upregulated in many cancers. This family of
enzymes enzymatically cross-links the lysines in the collagen
chains, resulting in stiffened tissue. In the local area of cancer
metastasis and growth, these processes are occurring at a more
rapid pace than in other parts of the body, resulting in increased
expression of a range of collagen, proteases, and other enzymes.
(C) The processes of protease generation and lysine cross-linking
are combined. (D) Design and generation of a sandwich assay
to detect both the lysine cross-link and the protease-generated
degradation product. Thus, this type of ELISA contains more in-
formation than traditional assays (i.e., both degradation and cross-
link information).
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linking by TG2 has been shown to be both pro- and antiapoptotic,

and favoring cell survival, invasion, and motility by the close asso-

ciation with surface integrins.293,294

Oxidations and Hydroxylations
Oxidative damage to proteins is often caused by the action of free

radicals, reactive oxygen species (ROS) and reactive nitrogen species

such as hydrogen peroxide and nitric oxide, generated in cells by the

mitochondrial respiratory chain.295 Oxidizing PTMs have been im-

plicated in several pathological and healthy tissue turnover pro-

cesses. Although many amino acids can be attacked by ROS, some

seem more likely to undergo oxidation than others. For example,

lysine and proline are readily oxidized to aldehydes; methionine is

sulfoxidized; and tyrosines are nitrosylated.296 Under normal con-

ditions, these ROS are strictly regulated by antioxidants, such as

peroxidases and dimutases among others.297 However, under path-

ological conditions, oxidation may be implicated in tissue destruc-

tion. The role of ROS in almost all aspects of cancer initiation and

development139,295,298–303 is still debated. Measurement of specific

components of the ECM that hold these oxidized PTMs may be useful

for both early diagnosis and prognosis of cancer.

Protease-Generated Neoepitopes
Matrix remodeling at specific disease stages results in both ele-

vated levels of, and uniquely modified, proteins. Endopeptidases,

such as MMPs and cysteine proteases, play major roles in the deg-

radation of extracellular macromolecules such as collagens and

proteoglycans. Specific proteolytic activities are a prerequisite for a

range of cellular functions and interactions with the ECM, resulting

in the generation of specific cleavage fragments. Even though many

components of the ECM, as well as enzymes responsible for re-

modeling, are present in different tissues, the combination of a spe-

cific peptidase and specific ECM protein may provide a unique

combination that elucidates activity in a particular tissue or a specific

disease mechanism.

One often-taught example of protease degradation of a given

tissue is that of joint degenerative diseases. Joint degenerative dis-

eases lead to alterations in the metabolism of the articular cartilage

and subchondral bone.278,304–309 Cartilage is for the most part

composed of collagen type II, which accounts for 60%–70% of the

dry weight of cartilage, and proteoglycans accounting for 10% of the

dry weight, of which aggrecan is the most abundant.310 Since type II

collagen is the most abundant protein in cartilage, several different

degradation fragments of collagen type II have been indicated as

useful for monitoring degenerative diseases of the cartilage.272,311

C-terminal telopeptide of type II collagen (CTX-II) is an MMP-generated

neoepitope derived from the C-terminal part of type II collagen,310

and measurement of CTX-II is highly useful for monitoring degra-

dation of type II collagen in experimental setups assessing cartilage

degradation.278,312 Examples of a range of protease-generated

neoepitopes have already been described in the literature, but they

have not been utilized by applied science to produce quantifiable

methods of disease assessment. Assays detecting a few neoepitopes

that have been developed and that are used in both clinical and

preclinical studies were reviewed recently.313

To some extent, C-terminal telopeptide of type I collagen (ICTP)

and MMP-derived fragments of type I collagen assays53,54,314–316 as

an indicator of cancer progression have been developed and used in

prognosis of lung and ovarian cancers. A range of biochemical

markers based on degradation products of the ECM, particularly

collagen, may be identified and used in cancer. The collagen com-

position of the BM and interstitial matrix may be relevant for the

development of the given marker for the ECMR associated with soft

tissue metastasis.

Isomerization: Advanced Glycation End Product
of ECM Proteins

Proteins containing aspartate (D), asparagine (N), glutamate (E), or

glutamine (Q) residues linked to a low–molecular-weight amino acid,

such as glycine (G), can undergo spontaneous nonenzymatic isom-

erization.15 This isomerization introduces a kink in the conformation

of the molecule, as the peptide backbone is redirected from the

g-carboxyl group in the native newly synthesized form to the side

chain g-carboxyl.290 Peptides that contain amino acid isomerizations

are often resistant to proteolysis.317,318 This feature affects the pro-

cessing of antigens for presentation on the major histocompatibility

complex II during the immune response signaling for the production

of T-cells and antibodies.15 In preclinical studies, it has been shown

that various known autoantigens contain sites prone to deamidation

and isomerization. These autoantigens are involved in type I diabetes,

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and

experimental autoimmune encephalomyelitis.317,319–322

The C-telopeptide of type I collagen marker CTX-I is a marker of

bone resorption. It has been shown that assessment of the non-

isomerized epitope (aCTX-I) is more sensitive as a marker for bone

metastases secondary to breast and prostate cancer than the isom-

erized epitope (bCTX-I).207 This is due to the high ECMR of type I

collagen in the bone area invaded by cancer cells, and thus a high

amount of newly formed nonisomerized collagen type I undergoes

resorption by osteoclasts.

Nonenzymatic Glycosylation
Nonenzymatic glycosylation is also called the Maillard reaction,

and leads to PTMs of proteins, nucleic acids, and lipids.273 A common

cause of nonenzymatic glycosylation is increased blood glucose

levels, and accordingly, most knowledge about nonenzymatic gly-

cosylation arises from studies performed in diabetics.273 The marker

HbA1c is an established PTM marker in type II diabetes. Recently,

advanced glycation end products (AGEs) have been implicated in

cancers. The nicotine-induced accumulation of AGEs is a cause of

cancer.323 The receptor for AGEs, called RAGE, is currently under

intense investigation as both a marker and an inducer of cancer324

and to assess whether there is a link between chronic inflammation

and cancer, since inflammatory mediators can both be pro- and

antitumorigenic.139,216,324,325
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Citrullination
Citrullination or deimination is the term used for

the PTM of the amino acid arginine, which can

transform into the amino acid citrulline. The change

is facilitated by peptidylarginine deiminases

(PADs).326,327 The conversion of arginine into cit-

rulline can have important consequences for the

structure and function of proteins, since arginine is

positively charged at a neutral pH, whereas citrul-

line is uncharged. The positive charge increases the

hydrophobicity of the protein, leading to changes in

protein folding.

Histone deacetylase 1 (HDAC1) inhibitors are

currently under development for the treatment of

certain cancers, particularly breast cancer.21 His-

tone lysine and arginine residues contain a wide

array of PTM-producing processes, including

methylation, citrullination, acetylation, ubquitina-

tion, and sumoylation. The combined action of

these modifications regulates critical DNA pro-

cesses, including replication, repair, and transcrip-

tion. In addition, enzymes that modify histone

lysine and arginine residues have been correlated

with not only cancer but also arthritis, heart disease,

diabetes, and neurodegenerative disorders.328,329

Histone methylation plays a key role in regulat-

ing the chromatin structure and function. The re-

cent identification of enzymes that antagonize or

remove histone methylation offers new insights into

histone methylation plasticity in the regulation of

epigenetic pathways. Peptidylarginine deiminase 4

(PADI4; also known as PAD4) was the first enzyme

shown to antagonize histone methylation. PADI4

functions as a histone deiminase, converting a

methylarginine residue to citrulline at specific sites

on the tails of histones H3 and H4. PADI4 associates

with HDAC1.328–330

NOVEL TECHNIQUES CURRENTLY
AVAILABLE FOR ASSESSING THE
STRUCTURE OF THE ECM

Clinical biochemistry provides a battery of

assessments for profiling tissue turnover pro-

files. A range of serological assessments

have been developed to investigate some of

the key structural proteins of the ECM

(Table 3).56,60,129,144,196–200,217,274,276,278,311,314,331–347

Measurement of these proteins may provide key

information in clinical settings on the tissue turn-

over profile, and thereby assists in patient diagnosis,

in identification of those patients in most need of

treatment, and finally, in monitoring of clinical

efficacy of interventions. These technologies may

Table 3. Currently Available Serological Markers Assessing the Structure
of the Extracellular Matrix

Name of

protein

fragment ECM component Reference

C1M MMP-mediated type I collagen degradation 198

C2M MMP-mediated type II collagen degradation 56

C3M MMP-mediated type III collagen degradation 60

C4M MMP-mediated type IV collagen degradation 197

C5M MMP-mediated type V collagen degradation 331

C6M MMP-mediated type VI collagen degradation 200

P1NP Type I collagen formation in tissues other than bone 144

P4NP 7S Type IV collagen formation 196

P5CP Type V collagen formation 199

PIIANP Type II collagen formation 332,333

PIIINP Type III collagen formation 334

VICM MMP-mediated citrullinated vimentin degradation 335

CRPM MMP-mediated CRP degradation 274

ELM MMP-mediated elastin degradation 217

BGM MMP-mediated biglycan degradation 336

MIM MMP-mediated mimican degradation 129

VCANM MMP-mediated versican degradation 337

TIM MMP-mediated titin degradation 338

Aggrecan MMP- and aggrenase-cleaved aggrecan 278

COMP Intact COMP 339

Osteocalcin Intact osteocalcin bone formation 340

HA Hyalonic acid 334

ICTP MMP-mediated type I collagen destruction 314

CTX-I Cathepsin K degraded type I collagen 276,311,341,342

CTX-II MMP-degraded type II collagen 343,344

C2C MMP-degraded type II collagen 345

TELO-I Citrullinated carboxyterminal telopeptides of type I collagen 346

TELO-II Citrullinated carboxyterminal telopeptides of type II collagen 346

MCV Mutated citrullinated vimentin 347

ECM, extracellular matrix; MMP, matrix metalloproteinase; CRP, C-reactive protein.
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also be used in preclinical settings, in ex vivo and in vitro cultures, to

determine the molecular mode of action in the assembly and main-

tenance of the matrix.311

An Example of a Combined Aged, Cross-Linked,
and Cleaved Neoepitope for the Evaluation
of Bone Metastases

The relationship between skeletal tumor load and elevations in

serum or urine levels of aCTX and seven other biomarkers related to

bone turnover has been investigated in a pooled group of breast and

prostate cancer patients.207 Patients were stratified according to the

Soloway score:

. Score 0: 0 bone metastases

. Score 1: <6 bone metastases

. Score 2: 6–20 bone metastases

. Score 3: >20 bone metastases

. Score 4: superscan showing that >75% ribs, vertebrae, and

pelvic bone are affected.

In breast cancer patients, a strong linear association was observed

between bone metastases and all biomarkers, except osteoprotegerin

and receptor activator of nuclear factor kB ligand (Figure 5). All six

remaining markers were significantly elevated in patients with a

Soloway score of 1. The relative percent increases in biomarker levels

in the presence of bone metastases were most pronounced for aCTX-

I, which was elevated by more than 600% in patients with Soloway

score of 3. The next highest increases were in bone-specific alkaline

phosphatase and N-telopeptide of type I collagen (NTX), which were

elevated by 470% and 440% at Soloway score 3, respectively. These

findings were supported by observations in prostate cancer patients,

which showed that of the seven biomarkers, aCTX-I was the most

sensitive for bone metastases.348 The higher sensitivity of aCTX-I

could be explained by the fact that this epitope is released from sites

of high bone remodeling, where collagen fibrils do not have time to

mature and undergo b-isomerization. The aCTX-1 epitope was located

by immunostaining adjacent sections of bones invaded by breast

cancer or prostate cancer,208 and at the sites of high bone remodeling.

These data support that careful selection of matrix constituents and,

in particular, those that carry one or more PTMs such as isomerization

in a type I collagen fragment generated by cathepsin K as described

in this example may be superior markers reflecting pathological,

including malignant, events in the ECM.

An Example of MMP-Degraded Type III Collagen
for the Assessment of Liver Fibrosis

The central pathological change in fibrosis is uncontrolled

ECMR.349,350 During fibrogenesis, the quantity and composition of

matrix proteins in the liver change, resulting in excessive accumu-

lation of fibrous (scar) tissue and an overall increase in the ECM

density.351 ECM matrix proteins in a normal liver are distributed

mainly in the portal tracts, whereas a BM-like matrix is located in the

perisinusoidal space of Disse. The most abundant collagens in the liver

are type I and III collagens, which by immunohistochemistry are found

predominantly in the perisinusoidal spaces, in portal tracts, and in

subcapsular areas.5,352 The ECM of the cirrhotic liver contains

approximately six times as much matrix as the normal liver,353 which

is a result of increased levels of type I, III, and IV collagens.354 How-

ever, levels of MMPs such as MMP-9 also increase in cirrhosis.349,355

The combination of active and overexpressed MMP-9 with the accu-

mulation of type III collagen poses the interesting hypothesis that an

MMP-9-generated fragment of type III collagen could be used as a

biochemical marker of liver fibrosis.

Type III collagen degradation by MMPs, and even MMP-9 exclu-

sively, may result in many unique fragments, such as those derived

from type II collagen and previously published.81 The CO3-610 (C3M)

fragment (KNGETGPQGP) is one of those, and is exclusively derived

from MMP-9. When this C3M fragment was assessed in two separate

animal models of liver fibrosis, the BDL and CCl4 animal models, a

>200% fold upregulation was observed, as well as a highly signifi-

cant correlation to portal pressure.60,356,357 These data strongly

suggest that liver fibrosis is not merely an accumulation of ECM

proteins, but a dynamic condition with accelerated ECM turnover, in

which both tissue formation and tissue degradation are highly up-

regulated. In the case of liver fibrosis, ECM tissue formation outstrips

tissue degradation, leading to a net accumulation of scar tissue over

time. This example also suggests that PTMs released by protease

degradation of proteins may in some cases be more sensitive markers

for pathology than intact proteins. This idea is receiving increased

Fig. 5. Relative increases in bone resorption, bone formation, and
osteoclastogenesis marker levels as a function of the extent of
skeletal metastasis, assessed in 132 patients with breast or pros-
tate cancer. Relative increases are expressed as a percentage of
levels in patients with a Soloway score 0.207
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attention.17 This approach has been recently been described as the

protein fingerprint technology, in which the different subpools of the

total pool of information about one protein during formation or

degradation provide distinct and important data.20

PTMS: THE CAUSE OR CONSEQUENCE
OF THE DISEASE?

Proteins are complex molecules susceptible to numerous PTMs

occurring spontaneously during aging or as a consequence of

physiologic or pathologic processes. Today, it is well established that

PTMs can uncover cryptic epitopes and/or create novel epitopes, to

which no tolerance exists.15 Antigenicity and interactions of proteins

with components of the immune system may be profoundly affected

by PTMs. Thus, modified self-antigens may be absent (indicating they

are not tolerated) during early T-cell selection, and trigger reactions

by the immune system as they arise later in life. In turn, this may play

a role in the initiation and pathogenesis of autoimmune diseases.15

Several studies have shown that various types of PTMs are hallmarks

of aging and are associated with autoimmune diseases, such as RA,

SLE, and type I diabetes.15,16,358–375

The presence of PTMs in several known autoantigens has been

reported. Many of these modifications have been implicated in the

antigenicity of the proteins, as outlined in Table 4 (modified from

Cloos and Christgau15).296,311,319–322,346,347,376–389 These observa-

tions have sparked a growing interest in the role and assessment of

PTMs in autoimmune diseases as well as other pathological condi-

tions associated with aging. Whether the presence of PTMs is merely

a secondary phenomenon accompanying the disease or a primary

event in disease initiation remains to be resolved.

It is noteworthy that T-cell responses to modified antigens in

general are very specific.390,391 In contrast, autoantibodies recog-

nizing modified proteins tend to be more nonspecific and often cross-

react with the native antigen. This B-cell promiscuity may play an

important role in the phenomenon of epitope-spreading character-

istics of many autoimmune diseases,392 which in part may be the

disease driver in illnesses such as RA. These examples serve to

highlight that in the immune system, PTMs, in various ways, may

initiate, play parts in the pathogenesis, or even constitute the central

events in some diseases. Regardless of whether PTMs are the chicken

or the egg, these examples further emphasize that PTMs are relevant

markers of diseases. Tools developed to measure specific mono-

clononal antibodies may aid the understanding of the temporal

events leading to PTMs, and their role in disease mechanisms.

FUTURE DIRECTIONS
In this review, we have described the key components of the ECM

and highlighted recent developments in the identification and mea-

surement of PTMs. There is a growing body of evidence that modi-

fications made to the structural proteins of the matrix may both be a

consequence of the disease as well as drivers of disease progression.

Thus, PTMs to specific ECM proteins may be more integrated in

pathogenesis than previously thought. Indeed, the matrix serves as

much more than just a structural framework for tissues.

Fibrosis and cancer involve signature proteins and enzymes. These

enzymes degrade the ECM and create a range of other PTMs, releasing

smaller fragments of ECM proteins into the circulation. An optimal

biochemical marker may be designed by identifying the common

denominator of specific pathophysiological processes to determine

Table 4. List of Post-Translational Modifications Involved
in Immune Responses in Different Autoimmune Diseases

Autoantigen

Relevant

disease/

animal model Modification Reference

MBP MS/EAE Acetylation 376

Citrullination 377

Isomerization 296

Phosphorylation 378

aB-crystallin MS/EAE Citrullination 379,380

Isomerization 321

Phosphorylation 381

Type I collagen RA Citrullination 346

Type II collagen RA/CIA Glycosylation 382

Protease degradation 311

Hydroxylation 382

Citrullination 346

Fibrin RA Citrullination 383

Fillagrin RA Citrullination 384

Vimentin RA Citrullination 347,385

IgG RA Isomerization 296

Glycation 386

Insulin Type I diabetes Deamidation 319

Isomerization 319

GAD Type I diabetes Oxidative damage 387

Histone H2B SLE Isomerization 322

Deamidation 388

Transglutamination 388

SnRNP D SLE Isomerization 320

SnRNP 70k SLE Phosphorylation 389

MS, multiple sclerosis; EAE, experimental autoimmune ecephalomyelitis;

RA, rheumatoid arthritis; CIA, collagen-induced arthritis; SLE, systemic lupus

erythematosus.
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the marker’s tissue specificity and sensitivity. Different cells of a

particular tissue predominately express given proteases that in

combination with different signature proteins from different host

tissues, which may provide optimal selective markers for connec-

tive tissue diseases. Biochemical markers based on the advanced

disease/tissue neoepitope approach could become an important tool

to be used in combination with others for diagnosing and staging

disease as well as assessing efficacy and safety of new therapeutic

interventions.
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