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Ageing is driven by the inexorable and stochastic accumu-

lation of damage in biomolecules vital for proper cellular

function. Although this process is fundamentally haph-

azard and uncontrollable, senescent decline and ageing

is broadly influenced by genetic and extrinsic factors.

Numerous gene mutations and treatments have been

shown to extend the lifespan of diverse organisms ranging

from the unicellular Saccharomyces cerevisiae to primates.

It is becoming increasingly apparent that most such inter-

ventions ultimately interface with cellular stress response

mechanisms, suggesting that longevity is intimately rela-

ted to the ability of the organism to effectively cope with

both intrinsic and extrinsic stress. Here, we survey the

molecular mechanisms that link ageing to main stress

response pathways, and mediate age-related changes in

the effectiveness of the response to stress. We also discuss

how each pathway contributes to modulate the ageing

process. A better understanding of the dynamics and

reciprocal interplay between stress responses and ageing

is critical for the development of novel therapeutic strate-

gies that exploit endogenous stress combat pathways

against age-associated pathologies.
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Introduction

Ageing is a complex process associated with progressive

decay of physiological function and homeostasis. At the

molecular level, ageing is characterized by the gradual

accumulation of deleterious modifications in nucleic acids,

proteins, lipids and carbohydrates. In humans, general age-

related frailty is also associated with severe pathological

conditions such as cancer and neurodegenerative diseases.

Over the past 20 years, ageing research has culminated

in the identification of classical signalling pathways that

influence ageing in a variety of species (Kenyon, 2010).

Accumulating findings indicate that longevity depends on

the ability of the organism to cope with extrinsic or intrinsic

stressors (Kirkwood and Austad, 2000). Indeed, compro-

mised stress responses are linked to the onset of many age-

related diseases.‘Stress’ is broadly defined as a noxious factor

(physical, chemical or biological), which triggers a series of

cellular and systemic events, resulting in restoration of

cellular and organismal homeostasis. To cope with conditions

of stress, organisms have developed a wide range of sophis-

ticated stress response mechanisms, acting at the cellular or

organelle-specific level. Notably, exposure to mild stress

activates cellular homeodynamic mechanisms, without

mounting a comprehensive stress response, which better

prepare the organism against stronger insults and promote

long-term survival. This phenomenon is known as hormesis

(Calabrese et al, 1987; Rattan, 2008).

Much of our understanding of the link between activation

of stress response pathways and longevity, as well as, the

impact of ageing on the effectiveness of stress response

mechanisms derive from studies in model organisms includ-

ing yeast, worms, flies and mice. Here, we review the main

cellular stress response mechanisms, focusing on the effects

of ageing on the capacity of the cell to mount a successful

stress response. Furthermore, we discuss the influence of

stress response on the ageing process. Maintaining efficient

mechanisms for counterbalancing stress is emerging as a

potential strategy towards ameliorating age-associated patho-

logies. To this end, we highlight several open questions that

need to be addressed before manipulation of stress response

pathways can be considered for therapeutic intervention.

The heat shock response

Exposure of cells and organisms to unfavourable conditions

such as heat, oxidative and osmotic stress, heavy metals and

proteasome inhibitors induces a highly conserved pro-

gramme of gene expression leading to selective transcription

and translation of heat shock proteins (HSPs) (Lindquist and

Craig, 1988; Morimoto, 2008). Based on their molecular

weight, HSPs are categorized into the HSP100, HSP90,

HSP70, HSP60 and the small HSP (sHSP) families. The heat

shock response is orchestrated by a set of heat shock tran-

scription factors (HSFs). The mammalian HSF family consists

of four members (HSF1-4), while Drosophila, Caenorhabditis

elegans and yeast express only one (HSF1) (Morimoto and

Santoro, 1998; Anckar and Sistonen, 2007; Akerfelt et al,

2010). Activation of heat shock response is a complex process

that involves trimerization and translocation of HSF1 to the
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nucleus, where it binds to heat shock elements within the

promoters of heat shock genes (Figure 1). HSF1 undergoes

multiple post-translational regulatory modifications such as

phosphorylation (Sorger and Pelham, 1988; Knauf et al, 1996;

Kline and Morimoto, 1997; Holmberg et al, 2001; Guettouche

et al, 2005), sumoylation (Hietakangas et al, 2003; Anckar

et al, 2006) and acetylation (Westerheide et al, 2009). Upon

sufficient induction of the heat shock response pathway,

HSF1 returns to monomeric form and interacts with HSP90,

HSP70 and HSP40 chaperones (Abravaya et al, 1992; Shi et al,

1998; Zou et al, 1998). In this state, HSF1 remains inactive

and the response is terminated. The tightly regulated initia-

tion, execution and termination of the response, through

complex post-translational modifications and protein interac-

tions, underscores the requirement for precise activation of

the heat shock pathway upon stressful conditions.

The hallmark of many age-related neurodegenerative dis-

eases, such as Alzheimer’s, Parkinson’s and Huntington’s

disease is the formation of insoluble protein aggregates.

Nevertheless, recent studies show that protein aggregation

also occurs in a non-disease context during ageing (David

et al, 2010). Global proteomics analysis revealed that several

hundred proteins displayed increased aggregation propensity

during normal ageing in C. elegans. Interestingly, mutations

that reduce insulin/IGF-1 signalling prevent protein insolubi-

lity during ageing. Reduced insulin/IGF-1 signalling is also

beneficial against pathology and disease caused by protein

aggregation (Morley et al, 2002; Cohen et al, 2006). In the
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Figure 1 General and organelle-specific stress response pathways influenced by the ageing process. Depending on the type of macromolecule
and the site of damage, distinct stress response pathways, such as autophagy, heat shock response, UPRmt, UPRER, remodelled proteasome and
the DNA damage response are initiated. Ageing broadly affects stress response pathways in multiple steps. For simplicity, only proteins with
functions modulated by ageing are depicted. Double arrows denote bi-directional communication with the nucleus, which involves generation
of stress signals in the stressed organelle or the cytoplasm, transduction of the signals to the nucleus and upregulation of stress-relieving
proteins, which in turn function to ameliorate damage. Question marks denote lack of information about specific molecules mediating the
effects of ageing. Although, a typical Golgi stress response pathway has not been described yet, several types of stress and also ageing may
influence gene expression in the nucleus and cell homeostasis by impinging on Golgi function. BER, base-excision repair; BiP, Ig-binding
protein; CHOP, C/EBP homologous protein; CMA, chaperone-mediated autophagy; DAF-16, abnormal dauer formation 16; DVE-1, defective
proventriculus 1; GRP94, glucose-regulated protein 94; HSF1, heat shock factor 1; HSP, heat shock protein; HR, homologous recombination;
IGF-1, insulin growth factor 1; LAMP-2A, lysosome-associated membrane protein 2A; NER, nucleotide-excision repair; NHEJ, non-homologous
end joining; PERK, PKR-like ER kinase; UPRER/mt, unfolded protein response endoplasmic reticulum/mitochondrion; XBP-1, X-box-binding
protein 1.
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nematode, the effects of insulin/IGF-1 signalling on ageing

are mediated by the transcription factor DAF-16/FOXO.

Remarkably, both DAF-16 and HSF1 increase longevity partly

by inducing shsp expression (Hsu et al, 2003). Identification

of the subset of DAF-16 target genes, responsible for the anti-

aggregation effects of low insulin/IGF-1 signalling will shed

light into the molecular mechanisms defending against pro-

tein aggregation-induced cytotoxicity during ageing. It is

important to note that age-related protein aggregate forma-

tion may alternatively serve as a protective function, similar

to that in neurodegeneration (Ross and Poirier, 2005). It is not

clear whether these aggregates contain damaged proteins,

carrying modifications that render them potentially harmful

for the cell. Moreover, the kinetics of protein aggregation

during ageing remains unknown; is there an age threshold

above which new aggregates form at a faster pace? Does this

point in time coincide with extensive aggregation of critical

chaperones, which consequently become inactive? Given that

multiple chaperone proteins involved in the maintenance of

proteostasis are themselves also prone to aggregation, it

would be interesting to investigate whether the concomitant,

runaway protein aggregation overwhelms proteostatic me-

chanisms, contributing to the collapse of general cellular

homeostasis during ageing.

Ageing is associated with elevated expression of HSP

genes, in the absence of other external stressors, suggesting

that the process of ageing generates intrinsic stress signals

and/or detunes gene expression programmes (Morrow and

Tanguay, 2003; Landis and Tower, 2005; Macario and Conway

de Macario, 2005; Muller et al, 2007). In spite of elevated

basal HSP expression, the effectiveness of the heat shock

response following acute extrinsic stress deteriorates with

age. Attenuation of the heat shock response is not the result

of decreased levels of HSF1 in aged animals (Heydari et al,

2000; Soti and Csermely, 2000). Instead, defects in the signal

transduction pathway that leads to HSF1 activation are likely

the reason for suboptimal induced expression of HSPs during

ageing (Heydari et al, 2000; Lu et al, 2000; Soti and Csermely,

2000). Upon stress, HSF1 is acetylated by histone acetyltrans-

ferase p300/CBP (CREB-binding protein). This modification

quenches the heat shock response by triggering the dissocia-

tion of HSF1 from target heat shock response elements on

DNA (HSEs). Pharmacological activation of SIRT1 by resver-

atrol, or overexpression of SIRT1 prolongs HSF1 binding to

target promoters and enhances the heat shock response

(Westerheide et al, 2009). Interestingly, reduced HSF1 DNA

binding and HSP expression coincides with a decrease in

SIRT1 expression during ageing. Another mechanism under-

lying the attenuation of stress response during ageing in-

volves specific HSPs. Increased basal levels of HSP70 and

other HSPs in old cells may retain HSF in an inactive state, as

part of the heat shock response initiation control mechanism

(Morimoto, 2002).

While detailed analysis of the heat shock response path-

way steps affected by ageing is still incomplete, it is becoming

clear that protein aggregation both in the context of heritable

disorders and in a non-disease setting, is characterized by

age-dependent progression. Indeed, recent studies indicate

that failure of proteostasis occurs in an age-dependent man-

ner, with the initial decline commencing early in adulthood

and leading to misfolding of folding sensors (Ben-Zvi et al,

2009). Importantly, collapse of proteostasis is ameliorated by

overexpression of the stress transcription factors HSF1 and

DAF-16, suggesting that interventions designed to fortify cell

proteostasis may successfully offset the consequences of

ageing on protein aggregation pathologies.

A paradoxical trait of several neurodegenerative disorders

is that, although the relevant mutant protein implicated in the

pathogenesis of the disease is expressed in a wide range of

neurons, only specific neuronal subtypes are prone to degen-

eration. Interestingly, even though the components of the

heat shock response are present in all cells, different tissues

show differential chaperoning capacity and induction of the

pathway (Kern et al, 2010). This disparity, combined with

tissue-specific alterations in the ubiquitin–proteasome system

(UPS) activity during ageing (Holmberg et al, 2001; Tonoki

et al, 2009), may explain the increased vulnerability of certain

cell types. However, whether activation of the heat shock

response or other proteostatic mechanisms is atypical in

degenerating neuronal types remains to be investigated.

The ubiquitin–proteasome system

Ageing is accompanied by accumulation of damaged and

modified proteins. The build up of altered proteins is the

result of a gradual deterioration of cellular quality control

mechanisms, decreased protein degradation or a combination

of both. The UPS is the main proteolytic mechanism, respon-

sible for the degradation of damaged proteins and the turn-

over of most cytosolic and nuclear proteins. The process of

protein degradation by the UPS involves two steps: tagging of

the protein with a polyubiquitin chain and the degradation of

the tagged protein by the proteasome (Ciechanover, 2005).

Polyubiquitination is a complex reaction involving ubiquitin,

a highly conserved 76 amino acids protein, and three differ-

ent enzymes (E1–E3). The proteasome is a multicatalytic

protease complex composed of one 20S catalytic core and

two 19S regulatory caps (Jung et al, 2009).

Oxidative stress has important roles during the ageing

process and age-related diseases. Oxidized proteins that

escape the low-molecular weight and enzymatic anti-oxida-

tive damage defences of the cell are recognized and degraded

by the proteasome. In the presence of moderate oxidant

concentrations, proteasomal degradation increases, whereas

higher oxidation levels lead to proteolytic inhibition (Ding

et al, 2006; Farout and Friguet, 2006; Breusing and Grune,

2008). Impairment of proteasomal activity induces a protea-

some stress response that ultimately results in upregulation

of proteasome subunit expression (Meiners et al, 2003;

Ju et al, 2004). In addition, ubiquitin depletion triggers

a ubiquitin stress response in yeast (Hanna et al, 2007).

Under such conditions, loading of proteasomes with Ubp6,

a deubiquitinating enzyme, is increased. In turn, this results

in greater recycling of ubiquitin at the proteasome. It would

be interesting to test whether this stress response is main-

tained during ageing, ensuring the availability of sufficient

ubiquitin for degradation of accumulating damaged proteins.

Proteasome activity declines with age in a variety of tissues

(Conconi et al, 1996; Shibatani et al, 1996; Anselmi et al,

1998; Ponnappan et al, 1999; Keller et al, 2000b). By contrast,

the ubiquitination system does not appear as affected by age

(Carrard et al, 2002). It should be noted that the decrease in

proteasome activity likely has an important role in the physio-

logical control of lifespan of specific cell types. For example,
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proteasome capacity dramatically decreases during plasma

cell differentiation (Cenci et al, 2006). This is paradoxical

given that plasma cells are highly active in antibody produc-

tion. Nevertheless, the decrease in abundance and activity of

proteasome predisposes plasma cells to apoptosis protecting

from excessive humoral response.

Multiple mechanisms have been implicated in the age-

dependent decline of the proteasome. Decreased expres-

sion of proteasomal subunits has been reported in several

experimental setups (Ly et al, 2000; Bulteau et al, 2002).

In addition, changes in proteasomal enzymatic activities are

caused by increased oxidative stress during ageing (Carrard

et al, 2002). Moreover, oxidized and damaged proteins can

directly inhibit the proteasome leading to depletion of active

proteolytic units (Terman and Brunk, 2004). However, the

impact of each of these factors on age-related loss of protea-

some function is not yet fully characterized. The threshold of

age-related modifications above which the proteasome is

overwhelmed and becomes dysfunctional, needs to be deter-

mined. Intriguingly, many of the genes mutated in age-related

diseases such as Alzheimer’s and Parkinson’s disease, have a

role in UPS (Keller et al, 2000a; Jenner, 2001). Maintenance or

enhancement of the proteolytic activity of the proteasome

during ageing might provide protection against neuronal cell

death documented in these diseases. It is important to note

that accumulation of unfolded and damaged proteins, follow-

ing proteasome inhibition, leads to activation of the heat

shock and the endoplasmic reticulum (ER) stress response

(Kisselev and Goldberg, 2001). Thus, the ubiquitin–protea-

some system is tightly integrated into a wider and complex

network of cellular proteostasis-preserving mechanisms.

Organelle-specific stress response
pathways

Endoplasmic reticulum

The ER is the organelle where newly synthesized proteins

destined for secretion, integration into the plasma membrane

or distribution to various organelles, are folded and post-

translationally modified. The environment within the ER is

highly crowded with chaperones, processing enzymes and

client proteins (Stevens and Argon, 1999). In this cluttered

and aggregation-prone environment, complex ER quality

control mechanisms ensure the proper translation and folding

of nascent proteins as well as the degradation of improperly

folded polypeptides (Ellgaard and Helenius, 2003). Key cha-

perones and folding sensors reside in the ER, including the Ig-

binding protein (BiP)/glucose-regulated protein 78 (GRP78),

GRP94, calnexin, calreticulin and protein disulphide isomer-

ase (PDI) (Naidoo, 2009). Several of these vital chaperones

and enzymes show decreased mRNA, protein levels and/or

enzymatic activity in various tissues during ageing (Erickson

et al, 2006; Paz Gavilan et al, 2006; Hussain and Ramaiah,

2007; Naidoo et al, 2008; Nuss et al, 2008). Consequently,

age-dependent decline of protein folding efficiency creates an

unstable ER environment, not capable of sustaining homeo-

stasis under steady-state or elevated stress conditions.

Conditions that elicit increased load of misfolded proteins

within the ER trigger the ER stress or unfolded protein

response (UPRER) (Schroder and Kaufman, 2005; Ron and

Walter, 2007). UPRER helps restore the normal function of ER

through upregulation of ER chaperones, halting protein

translation and stimulating the degradation of misfolded

proteins (Prostko et al, 1993; Kaufman, 1999; Hampton,

2000). In situations of persistent stress, failure of UPRER to

restore ER homeostasis results in apoptosis (Szegezdi et al,

2006). Apart from its role in the relief from stress induced by

various triggers, UPR is important for the differentiation and

proper function of professional secretory cells, which have

increased protein folding demands in the ER, such as anti-

body-secreting plasma cells, pancreatic b cells, hepatocytes

and osteoblasts (Wu and Kaufman, 2006). Downstream sig-

nalling during the UPRER response is mediated by three

transmembrane sensors: the inositol requiring element-1

(IRE-1), the PKR-like ER kinase (PERK) and the activating

transcription factor 6 (ATF6). The molecular chaperone BiP/

GRP78 retains these transmembrane receptor proteins in an

inactive state. When critical level of unfolded proteins is

exceeded, BiP/GRP78 dissociates from IRE-1, PERK and

ATF6 to facilitate protection against the overwhelming load

of misfolded proteins (Zhang and Kaufman, 2006). Activation

of UPRER through titration of BiP/GRP78 away from the three

sensors of ER stress is reminiscent of the mechanism by

which HSF is mobilized. Activation of ER stress mechanism

via direct recognition of unfolded proteins by stress transdu-

cers, as well as, a hybrid recognition model, involving both

mechanisms has been proposed (Ron and Walter, 2007).

Activated PERK phosphorylates the translation initiation

factor eIF2a, preventing protein synthesis from further over-

whelming the ER (Figure 1). Activated ATF6 translocates to

the Golgi, where it is cleaved by proteases to form an active

50 kDa transcription factor, which enters the nucleus and

upregulates the transcription of genes encoding ER chaperone

proteins such as BiP, PDI and GRP94 (Yoshida et al, 1998).

IRE-1 activation results in X-box-binding protein 1 (XBP-1)

splicing and activation. The activated spliced form of XBP-1

(XBP-1s) acts as a transcription factor, which enhances the

expression of genes involved in ER homeostasis as well as in

export and degradation of misfolded proteins (Yoshida et al,

2001, 2003; Calfon et al, 2002; Lee et al, 2003).

PERK mRNA expression is lower in aged rats compared

with young animals (Paz Gavilan et al, 2006). Interestingly, in

aged mice subjected to acute sleep deprivation, activation of

PERK and the subsequent inhibition of mRNA translation are

impaired (Naidoo et al, 2008). Such alleviation of the transla-

tion block initiates a vicious circle, where new protein

synthesis further aggravates ER stress. CHOP, a transcription

factor of the C/EBP family, is expressed at low levels under

normal conditions and it is markedly induced upon sustained

ER stress (Zinszner et al, 1998). CHOP also mediates apop-

tosis under conditions of extreme ER stress (McCullough

et al, 2001). Contrary to PERK, CHOP levels are higher in

various tissues of aged rodents (Paz Gavilan et al, 2006;

Hussain and Ramaiah, 2007; Naidoo et al, 2008). Exposure

of aged animals to stressors further increases the levels of

CHOP, whereas young animals show no increase of the

protein under similar conditions. It appears that aged animals

fail to mount a timely ER stress response due to alterations in

the expression of key components of the response. Moreover,

aged cells display increased levels of CHOP, which further

facilitates apoptosis, reducing the threshold for initiation of

cell death.

Recent studies in C. elegans show that XBP-1s synergizes

with DAF-16 to activate genes, which lead to enhanced ER
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stress resistance and also promote the longevity of mutants

with reduced insulin/IGF-1 signalling (Henis-Korenblit et al,

2010). It remains to be determined whether the IRE-1/XBP-1

axis is modified during ageing, which would impede coordi-

nation with other stress response factors and consequently

impair the ER stress response. ER stress activates both the

ubiquitin–proteasome and the macroautophagy–lysosome

proteolytic system (Yorimitsu et al, 2006; Ding and Yin,

2008). Whether ageing hinders the activation of these degra-

dation systems, leading to overflow of damaged proteins

remains to be seen. Interestingly, defective ER stress response

has been associated with age-related pathologies such as

diabetes, heart disease and neurodegenerative disorders

(Lindholm et al, 2006; Yoshida, 2007; Lin et al, 2008).

Whether ageing precipitates common alterations of the

UPRER components that underlie these diverse diseases is

unclear.

Mitochondria

Mitochondrial dysfunction has been associated with oxida-

tive stress, accelerated ageing, apoptosis, neurodegenerative

disorders and other pathological conditions. The matrix of

mitochondria contains a specific set of chaperones involved

in importing, refolding and preventing aggregation of pro-

teins encoded both by the nuclear genome and by mtDNA.

The main mitochondrial stress proteins are HSP60, mtHSP70,

HSP10, mtGrpE and mtDnaJ. Perturbation of the folding

environment in mitochondria elicits the mitochondrial un-

folded response (UPRmt) by inducing expression of nuclear

genes that encode mitochondrial chaperones (Zhao et al,

2002; Kuzmin et al, 2004; Yoneda et al, 2004). The mito-

chondrial stress response involves the transcription factors

CHOP and C/EBPb (Zhao et al, 2002). Several downstream

components of the UPRmt have also been identified. Upon

proteotoxic conditions, CLPP-1, a proteolytic subunit of the

mitochondrial Clp protease, generates peptides that are trans-

ported to the cytosol by the ABC transporter HAF-1.

Activation of UPRmt correlates with the formation of a com-

plex between UBL-5 (a ubiquitin-like protein) and DVE-1 (a

homeobox containing transcription factor) and the subse-

quent relocation of the complex to the nucleus. UPRmt also

triggers the relocation of the bZip transcription factor

ZC376.7 to the nucleus (Benedetti et al, 2006; Haynes et al,

2007, 2010).

In addition to the intrinsically stressful cellular context

accompanying ageing, organisms have to also cope with

external environmental challenges. Mitochondria isolated

from the liver of old rats display increased susceptibility to

hyperthermic conditions compared with young animals.

Moreover, activation of the mitochondrial stress response is

compromised in old animals, which fail to properly upregu-

late the mitochondrial stress proteins HSP60 and HSP10

(Haak et al, 2009). Finally, the processes of protein import

and damaged protein degradation, which are mediated by

mitochondrial stress proteins and are vital for mitochondrial

homeostasis, become inefficient during ageing (Craig and

Hood, 1997; Bulteau et al, 2006). However, the molecular

mechanisms that bring about this decline are not understood.

The lysosome

Autophagy is one of the main processes mediating both bulk

and specific degradation of cellular components, including

whole organelles and protein aggregates. Cargoes destined

for degradation are delivered to lysosomes, where they

are recycled. Three main types of autophagy have been

defined on the basis of lysosomal delivery mechanisms:

macroautophagy, microautophagy and chaperone-mediate

autophagy (CMA) (Cuervo, 2004; Mizushima et al, 2008).

Macroautophagy entails the sequestration of portions of the

cytoplasm within a double-membrane autophagic vacuole,

called autophagosome. The autophagosome fuses with secon-

dary lysosomes to form an autolysosome, where hydrolases

degrade the sequestered material (Yorimitsu and Klionsky,

2005). In microautophagy, which is less well characterized,

the lysosomal membrane itself invaginates to engulf cytosolic

components (Marzella et al, 1981). CMA is a highly selective

form of autophagy that requires unfolding of the protein

before internalization into the lysosome for degradation

(Dice, 2007; Cuervo, 2010). In addition to turnover of cellular

material, autophagy is involved in development, differentia-

tion and tissue remodelling. Although a basal level of macro-

autophagy and CMA is observed in various cell types, these

pathways are maximally activated under conditions of stress

(Figure 1). Analysis of mice harbouring tissue-specific, con-

ditional knockout alleles of autophagy genes demonstrates

that the capacity to modulate the rate of intracellular content

degradation in response to stress or a nutrient-depleted

environment is vital both for cell and organismal survival

(Komatsu et al, 2005, 2006; Hara et al, 2006; Nakai et al,

2007). The decreased lysosomal-mediated degradation ob-

served in rodent livers during ageing is attributed to defects

both in the clearance of autophagic vacuoles and in the

hormonal regulation of macroautophagy (Terman, 1995;

Vittorini et al, 1999; Donati et al, 2001, 2008; Brunk and

Terman, 2002). Lysosomes isolated from livers of old rats

show lower rates of CMA compared with young animals

(Cuervo and Dice, 2000). This decline in the efficiency of

CMA is the result of altered dynamics and stability of LAMP-

2A, the lysosomal receptor that recognizes substrates tar-

geted for CMA (Kiffin et al, 2007).

Autophagy is a complex process with multiple steps that

could potentially be altered by ageing. However, age-induced

modifications of specific components of macroautophagy

have yet to be studied systematically. Is it possible to restore

the function of the entire pathway by manipulating the levels

of one key protein? Interestingly, recent findings show that

modulation of the amount of LAMP-2A in a transgenic mouse

model is sufficient to maintain CMA activity until advanced

age (Zhang and Cuervo, 2008). Livers from these transgenic

animals display improved cellular homeostasis and resis-

tance to toxic compounds. Furthermore, restoration of normal

levels of Atg8, whose expression is impaired during ageing,

extends lifespan (Simonsen et al, 2008). In addition, auto-

phagy is activated when proteasome capacity is exceeded,

in an effort to compensate during excessive demands for

cellular proteolysis (Ding et al, 2007; Ding and Yin, 2008).

It would be interesting to investigate whether activation of

this backup proteolytic mechanism is impaired during age-

ing, leading to accumulation of misfolded and/or damaged

proteins.

Activation of macroautophagy or CMA through pharma-

cological interventions is potentially an effective approach

to maintain efficient clearance mechanisms in a damage-

prone environment. Indeed, pharmacological upregulation
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of macroautophagy slows down the progression of disease

in fly and mouse models of neurodegeneration (Ravikumar

et al, 2004). The importance of maintaining an efficient auto-

phagic response is also demonstrated by the fact that all long-

lived C. elegans mutants display increased macroautophagy

(Melendez et al, 2003; Hars et al, 2007; Hansen et al, 2008;

Toth et al, 2008). Nonetheless, excessive activation of auto-

phagy may lead to depletion of the essential autophagic com-

ponents and failure of proper response to stress. Consistent

with this notion, premature ageing in a mouse model of

progeria is accompanied with extensive basal activation

of autophagy (Marino et al, 2008). Moreover, examination

of Alzheimer’s disease patient brains revealed increased

autophagy (Lipinski et al, 2010). In addition, treatment of

healthy cells with Ab both increased initiation of autophagy

and decreased the rate of autophagosome clearance due to

reduced lysosomal function. Therefore, autophagy upregulation

may have adverse effects if initiated when cellular degradation

mechanisms are already overwhelmed. Activation of autophagy

above a crucial threshold, may also lead to cell demise due to

interference with pro-survival mechanisms and digestion of

anti-apoptotic molecules (Kourtis and Tavernarakis, 2009).

Evaluation of the degradation capacity of cells through life-

span, and genetic manipulation of autophagic processes in

model organisms during ageing will provide significant in-

sights into the role of autophagy in senescent decline, and

may contribute to the development of intervention strategies

targeting age-associated neurodegenerative disorders.

The nuclear DNA damage response

In contrast to most biomolecules such as proteins and lipids,

which can be recycled several times over the lifespan of a

cell, DNA cannot be resynthesized afresh to eliminate da-

mage. Instead, cells maintain elaborate genome maintenance

machinery to mend their genetic material. DNA damage can

be induced by exogenous hazards, such as UV radiation, by

endogenous toxic by-products of cellular metabolism, such as

reactive oxygen species (ROS) or by spontaneous chemical

reactions, such as hydrolysis (Lindahl, 1993; De Bont and van

Larebeke, 2004; Hoeijmakers, 2009). Defects in genome

maintenance mechanisms underlie the pathology of the vast

majority of progeroid syndromes, suggesting that DNA da-

mage, which also accumulates during normal ageing, con-

tributes to age-related deterioration (Dolle et al, 1997;

Sedelnikova et al, 2004; Garinis et al, 2008). In addition,

DNA repair mechanisms are subject to modifications

throughout the lifespan of a cell, leading to gradual loss of

repair accuracy and efficiency.

The genome maintenance apparatus of the cell consists of

multiple complex repair pathways, each targeting a specific

category of DNA lesion (Hoeijmakers, 2009). Base-excision

repair (BER) removes subtle lesions of DNA that affect only

one DNA strand, such as oxidized bases (Barnes and Lindahl,

2004; Caldecott, 2008). The complementary strand is used as

a template for repair. Ageing has a negative impact on BER

mechanisms (Figure 1). Both a drop in the activity of BER

enzymes and a reduction in the inducibility of the pathway

has been observed in aged mice (Cabelof et al, 2002, 2006;

Chen et al, 2002; Intano et al, 2003; Lu et al, 2004; Krishna

et al, 2005; Imam et al, 2006; Wilson and Bohr, 2007).

Nucleotide-excision repair (NER) is a multistep process

involving numerous proteins that target helix-distorting

lesions, resulting from UV exposure and carcinogenic com-

pounds (Hanawalt, 2002). NER comprises two subpathways:

the global-genome NER (GG-NER), which scans the genome

for helix distortions (Gillet and Scharer, 2006; Sugasawa,

2006), and the transcription-coupled NER (TC-NER), which

removes lesions that block transcription elongation (Fousteri

and Mullenders, 2008). Studies of NER both in vitro and in

young versus old animals show that NER efficiency declines

with age (Vijg et al, 1985; Wei et al, 1993; Goukassian et al,

2000, 2002; Xu et al, 2000; Yamada et al, 2006). It is not clear

whether this decrease is caused by diminished activity of

NER enzymes in old animals or by defects in the induction of

the DNA damage response.

Double-strand breaks (DSBs) are the most severe form of

DNA damage. DSBs are repaired through non-homologous

end joining (NHEJ), which merely joins two loose DNA ends

with a risk of mutagenesis and information loss, or through

homologous recombination, which uses the intact sister

chromatid as a template to copy the missing information

and seal the broken ends in an error-free manner. The main

detrimental outcome of age-related alterations in DSB repair

is the increase in cancer incidence, accompanied by genome

rearrangements and loss of heterozygosity, which are char-

acteristics of erroneous NHEJ (Fuscoe et al, 1994; DePinho,

2000). Notably, the availability of the Ku protein, which

recognizes and binds DSBs is reduced with age (Frasca

et al, 1999; Um et al, 2003; Doria et al, 2004; Ju et al, 2006;

Seluanov et al, 2007).

Several recent studies converge to indicate that weakened

DNA surveillance mechanisms are responsible for increased

frequency of DNA damage in old animals. For example, point

mutations and genomic rearrangements accumulate with age

in mice (Curtis and Crowley, 1963; Martin et al, 1985; Dolle

et al, 1997, 2000; Tucker et al, 1999; Stuart et al, 2000; Vijg

and Dolle, 2002). However, the net impact of age-related

alterations of DNA repair mechanisms on the overall genome

integrity and organism survival is not clear. Moreover, the

mechanisms by which ageing impinges on the DNA damage

repair pathways are not fully understood. An additional

caveat is that excessive DNA damage response triggers apop-

tosis, which may cause harmful loss of functional cells in the

context of ageing tissues, where self-renewal is limited.

Hormesis: an anti-ageing strategy?

The term hormesis describes the beneficial effects, resulting

from the exposure of an organism to a low intensity stressor

(Calabrese et al, 1987; Calabrese, 2004). The positive effect

of hormesis is attributed to the stimulation and priming of

stress response pathways by the stressor. Hormetic mani-

pulations such as repeated mild heat shock result in increased

stress-tolerance and extension in lifespan in various models

(e.g. yeast, Drosophila, nematodes, rodents and human cells)

(Minois, 2000; Cypser and Johnson, 2003; Rattan, 2004; Rattan

et al, 2004). The molecular mechanisms by which expo-

sure to low levels of stress confers hormetic resistance and

adaptability to adverse conditions are not fully understood.

Additional questions remain to be addressed before hormetic

interventions and stress response mimetics can be used as

an approach to influence ageing and delay or ameliorate

age-related pathologies. What is the lower stress threshold

for activating a hormetic response? Is there a collateral cost of
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repeated exposure to low stress? Which stress response path-

ways mediate the protective effects of hormesis?

Crosstalk between stress response
pathways: a domino effect?

Accumulating findings indicate that distinct stress response

pathways do not function in isolation but rather, are parts

of a wider stress network with multiple hubs that serve

as coordinators of various modules. The kinase target

of rapamycin (TOR) is part of an evolutionary conserved

signalling pathway that links extracellular stimuli with

intracellular processes such as cellular growth, metabolism,

translational control and proliferation. TOR also inhibits

autophagy through phosphorylation of the ATG1 protein

kinase (Wullschleger et al, 2006; Chan, 2009). The TOR

kinase senses chaperone availability and responds differen-

tially to mild and severe depletion of different chaperones

(Qian et al, 2010). This mechanism allows continuous integ-

ration of extracellular nutrient levels and intracellular protein

homeostasis. Age-dependent alterations of the heat shock

response pathway and consequently, fluctuations of chaper-

one levels might influence other stress response pathways

such as autophagy through TOR (Figure 2). Thus, TOR

signalling stands at the crossroads of metabolism, protein

homeostasis and ageing.

Sestrins are a family of highly conserved cytoplasmic

proteins, whose expression is induced by stress (Budanov

et al, 2004). In mammals, sestrins 1 and 2 block mammalian

TOR (mTOR) signalling in response to genotoxic stress

through a pathway that involves p53, adenosine mono-

phosphate-activated protein kinase (AMPK) and tuberous

sclerosis complex 2 (TSC2) (Budanov and Karin, 2008).

In Drosophila, sestrin prevents excessive activation of TOR

via a negative feedback mechanism and suppresses age-

related pathologies (Lee et al, 2010). Therefore, sestrins and

TOR act as central nodes in the crosstalk between genotoxic

stress and metabolic activity controlled by lipid/protein

synthesis and autophagy (Figure 2). Another key regulator

of autophagy is Beclin 1, which interacts with numerous

proteins such as: Atg14L, UVRAG, Bif-1, Rubicon, Bcl-2,

Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and

survivin (Kroemer et al, 2010). Therefore, Beclin 1 integ-

rates signals from diverse pathways, which are themselves

subjected to age-dependent fluctuations.

Both the ER and mitochondrial UPR result in elevated

expression of the CHOP gene encoding a bZIP transcription

factor CHOP (C/EBP Homology Protein). Although CHOP is

shared by the two responses, induction of the UPRmt does not

cause upregulation of stress-inducible chaperones from non-

mitochondrial compartments. Identification of the additional

factors that provide specificity will further illuminate the

interorganelle communication of stress response pathways

with the nucleus.

In addition, proteasome activity is important for DNA

repair processes at various levels (Mieczkowski et al, 2000;

Luo et al, 2001). Stress-induced activation of the proteasome

in the nucleus declines during replicative senescence of

human fibroblasts. This decline is due to ageing-dependent

decrease of the expression and activity of poly-(ADP-ribose)
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SIRT1
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Figure 2 Crosstalk between stress response pathways implicated in ageing. TOR and SIRT1 serve as central hubs in the stress response
network connecting autophagy, DNA damage and the heat shock response. Protein misfolding, triggered by stress, depletes the pool of
chaperones. Excess nutrition or reduced chaperone availability cause imbalance between mTORC1 assembly and disassembly, resulting in
elevated signalling. The deacetylase SIRT1 targets multiple transcriptional regulators (p53, FOXO and HSF1), participating in distinct stress
response pathways. SIRT1 activity is modulated by nutrient availability and is altered during ageing. Similarly, the efficiency of HSF1 activation
and autophagosome clearance is impaired during ageing. As a consequence, heat shock protein production is perturbed. Excessive oxidative
stress aggravates the symptoms of ageing and age-related pathologies. Activation of TOR increases transcription of SESN. SESN expression is
dependent on ROS accumulation and involves JNK and FOXO. SESN is also the target of the tumour suppressor p53, which is activated upon
genotoxic stress. Increased SESN activity inhibits TOR signalling by activating AMPK and TSC2. AMPK, adenosine monophosphate-activated
protein kinase; FOXO, forkhead box O; HSF1, heat shock factor 1; HSP, heat shock protein; JNK, c-Jun N-terminal kinase; ROS, reactive oxygen
species; SESN, sestrin; SIRT1, sirtuin1; TOR, target of rapamycin; TSC2, tuberous sclerosis complex 2.

Stress and ageing
N Kourtis and N Tavernarakis

The EMBO Journal VOL 30 | NO 13 | 2011 &2011 European Molecular Biology Organization2526



polymerase 1 (PARP-1), which stimulates proteasome (Bakondi

et al, 2011).

Sirtuins link metabolic status to the regulation of longevity.

Interestingly, several transcription factors involved in cellular

stress responses, including FOXO3, p53, NF-kB and HSF1, are

regulated by SIRT1 (Vaziri et al, 2001; Brunet et al, 2004;

Yeung et al, 2004; Westerheide et al, 2009). It appears that

SIRT1 may function to orchestrate different stress response

pathways during ageing. Indeed, the beneficial effects of low

caloric intake are mediated by members of the sirtuin family.

Given that SIRT1 directly deacetylates HSF1 and therefore

regulates the heat shock response, it is possible that the

positive effect of sirtuin on lifespan might be mediated

through a dynamic preservation of proteostasis. It remains

to be determined whether SIRT1 activity is altered in vivo

during ageing and whether this coincides with the age-related

decline of various stress responses. Recently, parkin has been

implicated in coordinating both ER and mitochondrial stress

mechanisms (Bouman et al, 2010). This is particularly inter-

esting given the fact that a disease-associated protein is

upregulated in response to distinct organelle stress. An addi-

tional important question is how the status of the response to

stress in a specific organelle influences its fate. Defects in

UPRER or UPRmt might signal the demise of the corresponding

organelle through macroautophagy, in an effort to contain

homeostasis imbalance. Accumulation of damaged organelles

during ageing may stem from failure to emit or respond to

such ‘eat-me’ signals. Along these lines, it is important to

understand how a stress response initiated in one organelle is

sensed by the cell’s homeostatic network and whether com-

pensatory mechanisms are triggered to avoid a general col-

lapse of cellular homeostasis.

Conclusions and perspectives

The process of ageing both influences and is influenced by

cellular stress responses. Studies in different organisms con-

verge to illustrate the multifaceted nature of this bi-direc-

tional crosstalk. Both the general heat shock response

pathway in the cytosol and organelle-specific stress responses

(UPRER, UPRmt) are stepwise procedures depending on the

detection of the damage, transmission of the stress signal to

the nucleus, upregulation of stress combating proteins and

translocation of these proteins to the site of damage. Ageing

impinges on multiple points in this cascade to compromise

the response to stress. Identification of these interference

nodes will lead to a better understanding of how ageing

influences stress resistance and undermines survival.

By segregating chaperones to specific organelles, cells have

developed efficient strategies to monitor the folding environ-

ment, prevent and neutralize damage. While considerable

progress has been made in recent years towards the char-

acterization of cellular and organelle-specific stress response

pathways, the relevant molecular mechanisms at operation in

some organelles remain elusive. For example, although Golgi

follows the ER in the secretory pathway, a stress response

similar to UPRER has not been described for this organelle,

albeit the presence of signalling proteins at the Golgi mem-

branes, which make this organelle a potent stress sensor

(Preisinger and Barr, 2001; Chiu et al, 2002b; Freyberg et al,

2003; Hicks and Machamer, 2005). Interestingly, Golgi dys-

function has been implicated in several age-related diseases

(Lane et al, 2002; Chiu et al, 2002a; Baloyannis et al, 2004;

Fujita et al, 2006; Hu et al, 2007). Whether a bona fide Golgi

stress response pathway exists and is modified during ageing

remains to be elucidated.

Uncontrolled activation of stress response pathways may

have undesirable effects. Tumour cells, which have lost the

ability to effectively control growth, express higher levels of

chaperones (Jaattela, 1999; Calderwood et al, 2006). Increased

resistance to stress via enhancement of the cellular stress

response pathways may promote cancer development by

helping cancer cells to cope with unfavourable condi-

tions (Dai et al, 2007). In addition, although HSPs have

beneficial effects on the preservation of homeostasis, their

overexpression above a certain threshold may dampen heat

shock response via negative feedback on HSF activation.

Moreover, given that several stress response pathways are

linked to cell death, their tight regulation is imperative, since

excessive activation may lead to overall loss of functional

cells. Hyperactivation of stress response pathways may also

lead to depletion of critical cellular resources, aggravating

adverse conditions or insults.

Although the gradual deterioration of stress response

mechanisms is a general feature of ageing in diverse organ-

isms, it remains unclear whether this decline is simply a

corollary of the ageing process or a significant causative

factor, contributing to senescence. Studies in simple model

organisms, where stress response pathways can be geneti-

cally manipulated are poised to provide significant new

insights into this issue. Importantly, such studies should

also yield useful information about potential targets for

pharmaceutical interventions aiming to augment cellular

stress response and defence mechanisms during ageing in

an effort to combat age-related health hazards.
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