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The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low
bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies
have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides),
which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute
very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to
date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and
the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The
Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic
acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and
efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal
models. This review focuses on the structure–function relationship of non-covalent MPG and Pep-1 strategies, and
their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models.

Introduction
The poor permeability of the plasma membrane of
eukaryotic cells to drugs and DNA, together with
the low efficiency of DNA or oligonucleotides to
reach their target within cells, constitute the two
major barriers for the development of therapeutic
molecules. Therefore, over last 10 years, substantial
progress has been made in the design of new tech-
nologies to improve cellular uptake of therapeutic
compounds (Opalinska and Gewirtz, 2002; Järver
and Langel, 2004; Glover et al., 2005; Torchilin,
2005; De Fougerolles et al., 2007; Kong and Mooney,
2007). This development has been directly correlated
with the dramatic acceleration in the production of
new therapeutic molecules. Before then, cell delivery
systems were restricted by specific problems. A num-
1To whom correspondence should be addressed (email
gilles.divita@crbm.cnrs.fr).
Key words: cell-penetrating peptide (CPP), drug delivery, nanoparticle,
non-covalent delivery system, short interfering RNA (siRNA).
Abbreviations used: CPP, cell-penetrating peptide; FTIR, Fourier-transform
infrared; GAG, glycosaminoglycan; gp41, glycoprotein 41; HypNA–pPNA,
trans-4-hydroxyl-L-proline–phosphonate-PNA; NLS, nuclear localization
sequence; PEG, poly(ethylene glycol); PNA, peptide nucleic acid; siRNA, short
interfering RNA.

ber of non-viral strategies have been proposed, includ-
ing lipid-, polycationic-, nanoparticle- and peptide-
based methods (Morris et al., 2000; Ogris and
Wagner, 2002; Järver and Langel, 2004; Torchilin,
2005), but only a few of these technologies have been
efficiently applied in vivo at either pre-clinical or clin-
ical levels. Their major limitations include the poor
stability of the complexes and the rapid degradation
of the cargo, as well as its insufficient ability to reach
its target. CPPs (cell-penetrating peptides) constitute
one of the most promising tools for delivering biolo-
gically active molecules into cells and therefore play
a key role in the future of disease treatments (Järver
and Langel, 2004; Joliot and Prochiantz, 2004;
Langel, 2007; Moschos et al., 2007). CPPs have been
shown to efficiently improve intracellular delivery
of various biomolecules, including plasmid DNA,
oligonucleotides, siRNA (short interfering RNA),
PNA (peptide nucleic acid), proteins and peptides, as
well as liposome nanoparticles, into cells both in vivo
and in vitro. Short synthetic CPPs have been designed
to overcome both extracellular and intracellular lim-
itations, and to trigger the movement of a cargo across
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the cell membrane into the cytoplasm and improve
its intracellular trafficking, thereby facilitating inter-
actions with the target (Gariepy and Kawamura,
2000; Morris et al., 2000; Järver and Langel 2004;
Joliot and Prochiantz, 2004;, Deshayes et al., 2005;
Snyder and Dowdy, 2005; Langel, 2007). Two
major strategies have been described: (1) the covalent
linkage of the cargo to the CPP, thereby forming a
conjugate which is achieved by either chemical cross-
linking, cloning or expression of a protein fused to
the CPP (Nagahara et al., 1998; Gait, 2003; Moulton
and Moulton, 2004; Zatsepin et al., 2005); and
(2) the formation of a non-covalent complex between
the two partners. Peptides derived from the trans-
activating regulatory protein, TAT, of HIV (Frankel
and Pabo, 1998; Fawell et al., 1994; Vives et al.,
1997; Schwarze et al., 1999), the third α-helix of
Antennapedia homeodomain protein (Derossi et al.,
1994; Joliot and Prochiantz; 2004), the VP22 protein
from herpes simplex virus (Elliott and O’Hare, 1997),
the polyarginine peptide sequence (Wender et al.,
2000; Futaki et al., 2001), peptides derived from cal-
citonin (Schmidt et al., 1998; Krauss et al., 2004) or
from antimicrobial peptides buforin I and SynB (Park
et al., 2000), as well as polyproline sweet-arrow pep-
tide (Pujals et al., 2006), transportan and derivates
(Pooga et al., 1998, 2001; Järver and Langel, 2004)
have been successfully used to improve the delivery of
covalently linked peptides or proteins into cells and
have been shown to be of considerable interest for
protein therapeutics (Joliot and Prochiantz, 2004;
El-Andaloussi et al., 2005; Murriel and Dowdy,
2006; Langel, 2007). Although conjugation meth-
ods offer several advantages for in vivo applications,
including rationalization and control of the CPP–
cargo, they remain limited from the chemical point of
view, as they risk altering the biological activity of the
cargoes. In order to offer an alternative to covalent
methods, we have proposed a new potent strategy
for the delivery of biomolecules into mammalian
cells, on the basis of the short amphipathic pep-
tide carriers MPG and Pep (Morris et al., 1997,
2001; Simeoni et al., 2003). MPG and Pep form
stable nanoparticles with cargoes without the need
for cross-linking or chemical modifications. MPG
efficiently delivers nucleic acids (plasmid DNA, oli-
gonucleotides and siRNA) and Pep improves the
delivery of proteins and peptides in a fully biolo-
gically active form into a variety of cell lines and

in vivo (Morris et al., 2001, 2007a, 2007b; Simeoni
et al., 2003, 2005). This non-covalent strategy has
been recently extended to other CPPs, including TAT
(Meade and Dowdy, 2007), polyarginine (Kim et al.,
2006; Kumar et al., 2007) and transportan (Lundberg
et al., 2007). The mechanism through which MPG
and Pep deliver active macromolecules does not in-
volve the endosomal pathway and therefore allows
the controlled release of the cargo into the appropri-
ate target subcellular compartment (Deshayes et al.,
2004a, 2004b).

In this review we will describe the characteristics
and mechanism(s) of amphipathic peptide-based non-
covalent strategies in the general context of the CPPs.
We will also highlight the use of both MPG and Pep
carriers for the delivery of nucleic acids, peptides or
analogues both in vitro and in vivo.

MPG and Pep families
Design and structure of MPG and Pep-1
An amphipathic molecule can be defined, in short,
as consisting of two domains: a hydrophilic (po-
lar) domain and a hydrophobic (non-polar) domain.
For peptides, the amphipathic character may arise
from either the primary structure or the second-
ary structure. Primary amphipathic peptides can be
defined as the sequential assembly of a domain of
hydrophobic residues with a domain of hydrophilic
residues. Secondary amphipathic peptides are gen-
erated by the conformational state which allows
positioning of hydrophobic and hydrophilic resi-
dues on opposite sides of the molecule. MPG (27
residues: GALFLGFLGAAGSTMGAWSQPKKKR-
KV) and Pep-1 (21 residues: KETWWETWW-
TEWSQPKKKRKV) are primary amphipathic
peptides (Figure 1A), consisting of three domains:
a variable N-terminal hydrophobic motif; a hydro-
philic lysine-rich domain, which, in both peptide
families, is derived from the NLS (nuclear local-
ization sequence) of SV40 (simian virus 40) large
T-antigen (KKKRKV), and is required for the main
interactions with nucleic acids, intracellular traffick-
ing of the cargo and solubility of the peptide vector;
and a linker domain (WSQP), separating the two
domains mentioned above, that contains a proline
residue, which improves the flexibility and the in-
tegrity of both the hydrophobic and the hydrophilic
domains (Morris et al., 1997, 1999a; Simeoni et al.,
2003). The two peptide families differ mainly in their
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hydrophobic domain. The hydrophobic moiety of
MPG (GALFLGFLGAAGSTMGA), derived from the
fusion sequence of the HIV gp41 (glycoprotein 41),
is required for efficient targeting to the cell mem-
brane and cellular uptake. The hydrophobic motif of
Pep-1 corresponds to a tryptophan-rich cluster (KET-
WWETWWTEW), which is also required for effi-
cient targeting to the cell membrane and for forming
hydrophobic interactions with proteins. Structural
and mechanistic investigations have revealed that
the flexibility between the two domains of MPG or
Pep-1, which are maintained by the linker sequence
between the fusion and the NLS motifs, is crucial
for macromolecule delivery (Morris et al., 1999a;
Simeoni et al., 2003; Deshayes et al., 2004a; Simeoni
et al., 2005). Both peptide sequences are acetylated
at their N-terminus and carry a cysteamide group at
their C-terminus, both of which are essential for the
stability of the peptides and their transduction mech-
anism. The cysteamide function is also essential for
cellular uptake mechanisms and is required for sta-
bilization of the carrier–cargo particles (Mery et al.,
1993; Morris et al., 2001, 2007b; Simeoni et al.,
2003). It is clearly established that for potent cell
entry, the cysteamide group needs to be free and not
involved in a disulfide bridge. The sequence of MPG
has been modified in order to facilitate rapid release
of the cargo into the cytoplasm and to allow function-
alization of the carrier for selective in vivo targeting
(Simeoni et al., 2003, Crombez et al., 2007). A single
mutation on the second lysine residue of the NLS se-
quence to a serine (MPG�NLS; GALFLGFLGAAGST-
MGAWSQPKSKRKV) abolishes the nuclear translo-
cation property (Simeoni et al., 2003). Several modi-
fications of Pep-1 sequences have also been proposed
to stabilize the cargo–carrier complexes or to extend
the potency of this strategy to other cargo molecules
(Figure 1A). Pep-2 was reported to facilitate the cel-
lular uptake of PNAs and analogues in cellulo (Morris
et al., 2004a). A rational approach based on Pep-2 was
performed to identify residues required for optimal
carrier functions and parameters for the optimization
of Pep sequence (Morris et al., 2007b) as follows: (1)
the sequence should bear a minimum of four cationic
residues within the hydrophilic domain for the initial
electrostatic interactions between the peptide and cell
membrane components; (2) the presence of a charge
(Lys1) at the N-terminus of the peptide and the flex-
ibility between the hydrophobic and the hydrophilic

domains associated with the presence of a proline
(Pro14) residue are essential; and (3) the helical struc-
ture of Pep carriers and the position of a Trp–Phe
tandem on the same side of the helix are required
for the interaction with the cell membrane, and to
enable aromatic residues to interact with lipids and
consequently favour membrane disorganization (De-
shayes et al., 2004a). Taking these factors into account
a new peptide, Pep-3, was designed, which tends to
adopt a helical structure within membranes, forms
‘nanoparticles’ with charged and uncharged PNAs
and improves their delivery into a large range of cell
lines, as well as in animal models. Moreover, Pep-
3 has been PEGylated [where PEG is poly(ethylene
glycol)] at the N-terminus to improve in vivo delivery
of biomolecules (Morris et al., 2004a, 2007b).

Non-covalent strategy: formation of carrier–cargo
complexes
MPG and Pep-1 peptides associate rapidly in solu-
tion with their respective cargo (oligonucleotide or
protein/peptide) through non-covalent electrostatic
or hydrophobic interactions and form stable com-
plexes independently of specific sequences (Morris
et al., 1997, 1999a, 2001). MPG and Pep-1 exhibit
high affinity in the nanomolar range for their re-
spective cargoes. MPG interacts with small single-
and double-stranded oligonucleotides, as well as with
large plasmid DNA. The carrier–oligonucleotide in-
teractions are initiated by the electrostatic NLS do-
main, and then followed by peptide–peptide inter-
actions through the gp41 hydrophobic domain, thus
generating a peptide cage around the nucleic acid
(Morris et al., 1999a; Marthinet et al., 2004). Pep-1
forms stable peptide-based nanostructures around a
diverse range of cargoes, including proteins, pep-
tides, quantum dots, viruses and uncharged hydro-
phobic molecules (Morris et al., 2001, 2007a; Gros
et al., 2006). The interactions involve both the aro-
matic residues of the hydrophobic domain of Pep-1,
as well as the helical structural organization of the
carrier (Morris et al., 2001, 2007b; Deshayes et al.,
2004a). Both MPG and Pep peptides form nanoparti-
cles with their respective cargoes, including several
peptide molecules for one molecule of cargo, which
significantly improves the stability of the cargo inside
the cell and significantly protects it from degradation.
Basically, the molar ratio of the carrier–cargo complex
is approx. 10:25, depending on the size of the nucleic
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Figure 1 MPG- and Pep-based nanoparticles for macromolecule delivery
(A) Sequence alignment and secondary structure of the different peptide carriers. Residues involved in cargo binding and

cellular uptake are in red and blue respectively. The structure of the hydrophobic domain of Pep and MPG carrier peptides were

obtained on the basis of NMR/CD and FTIR studies (Deshayes et al., 2004a, 2004b). Ac, acetyl; Cya, cysteamide. (B) Correlation

between the associated biological response and the size of MPG–siRNA and Pep-1–protein particles. MPG–siRNA (siRNA

targeting GAPDH) and Pep-1–p27Kip complexes were formed at various ratios from 1:1 to 50:1 in PBS, the volume adjusted

to 500 μl in DMEM (Dulbecco’s modified Eagle’s medium) and applied to HS68 fibroblasts. The size of particle complexes was

determined by light-scattering measurement and their ability to induce a biological response; siRNA-mediated knockdown (KD)

of GAPDH or p27Kip-dependent G1 arrest was determined either by Western blotting or by FACS analysis. (C) Pep-1 forms stable

nanoparticles with protein cargoes. The p27Kip protein was used as a cargo, and Pep-1–p27Kip complexes were formed in water

at ratios of 20:1 and 50:1, and analysed by scanning electron microscopy. The complexes obtained at a 20:1 ratio form discrete

nanoparticles of approx. 100 nm diameter. In contrast, when the concentration of Pep-1 is increased to reach a Pep-1/cargo

molar ratio of 50:1, large aggregates are observed from which nanoparticular buds protrude.

acid or of the peptide–protein cargo (Morris et al.,
1999a; Simeoni et al., 2003; Gros et al., 2006). Act-
ive peptide–cargo complexes were identified as dis-
crete nanoparticles, with an estimated size between
100 and 200 nm in diameter as determined by light
scattering and further characterized by scanning elec-
tron microscopy (Munoz-Morris et al., 2007). Both
the size and homogeneity of the nanoparticles are de-
pendent on the carrier/cargo ratio and optimal in vivo
biologically efficiency has been reported for a car-
rier/cargo ratio of approx. 10:1 to 15:1, depending

on the nature of the cargo. The use of greater ratios
induces precipitation or formation of larger particles
that hardly enter cells (Gros et al., 2006; Munoz-
Morris et al., 2007; Morris et al., 2007b) (Figure 1B).

Cellular uptake mechanism of CPPs
Major rules: artefacts or reality?
Understanding the cellular uptake mechanism of
CPPs is essential for the development of appro-
priate strategies and optimization for therapeutic
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applications in vivo. In the last 5 years, researchers
in the CPP field have learnt much from artefacts
that have been associated with fixation methods, as
described by several groups (Lundberg et al., 2003;
Richard et al., 2003), or the use of fluorescent probes
attached to CPPs that can modify their cellular be-
haviour (Pichon et al., 1999). Therefore important
rules for the evaluation of CPP mechanisms have
been proposed and allowed the revision of several
cellular uptake mechanisms, which had been shown
to be essentially associated with the endosomal path-
way (Richard et al., 2003, 2005; Nakase et al., 2004;
Wadia et al., 2004; Fischer et al., 2005; Murriel and
Dowdy, 2007). As such, evidence for several routes of
cell entry have been reported for most CPPs, depend-
ing on the nature of the CPP, of the cargo and of their
active concentrations, some of which are independent
of the endosomal pathway and involve the transmem-
brane potential (Terrone et al., 2003; Thoren et al.,
2003; Rothbard et al., 2004; Deshayes et al., 2005).
Investigation of the mechanism of internalization re-
quires identification of several physicochemical prop-
erties of the carrier peptides, including membrane in-
teractions and cellular release. Visualization of CPPs
inside the cell remains limited to the use of fluor-
escein-labelled CPPs, with the risk that fluorescent
dyes alter the uptake mechanism or trigger an un-
usual cell entry pathway. However, it is now clearly
established that artefacts associated with fixation pro-
tocols and the nature of the dyes have to be taken into
account and only experiments reported in live cells
are useful (Lundberg and Johansson, 2001; Lundberg
et al., 2003; Richard et al., 2003). Moreover, as sev-
eral routes may exist, it is essential to identify the
one actually yielding a biological response. There-
fore an essential rule when investigating the up-
take mechanism of CPPs is to correlate the uptake
pathway with a biological response associated with
a specific cargo (Wadia et al., 2004; Gros et al.,
2006).

Cellular uptake mechanism: involvement of the
secondary structure of the CPPs
Understanding the interactions of CPPs with phos-
pholipids constitutes a major issue. An important
criterion to be considered is the structural require-
ments for cellular uptake of CPPs and their ability
to interact with the cell surface and lipid moieties of
the cell membrane. A variety of physical and spectro-

scopic approaches can be combined to gain insight
into the structure(s) involved in the interactions of
peptides with membranes, and to monitor the associ-
ation of carrier–cargo complexes with lipids, and thus
to characterize their mechanism of cellular internal-
ization (Magzoub and Gräslund, 2004; Deshayes
et al., 2005, 2006, 2007; Esbjokner et al., 2007).
The most commonly used biophysical methods are
briefly described in this section. NMR has been used
for detailed identification of membrane-interacting
protein and peptide structures. Most investigations
have been carried out in the presence of micelles
or bicelles, which give rise to resolved NMR spec-
tra (Magzoub and Gräslund, 2004; Esbjokner et al.,
2007). However, the relevance to membranes of the
information obtained must be questioned, as nearly
all studies indicate that peptides in the presence of
micelles adopt a helical conformation, although this
is not always the case (Deshayes et al., 2004a, 2004b).
FTIR (Fourier-transform infrared) spectroscopy is one
of the easiest methods to handle and provide informa-
tion on the global conformational state, and therefore
enables detection of conformational changes due to
variations in the environment. FTIR also allows de-
termination of the peptide orientation with respect
to the interface (Van Mau et al., 1999; Tatulian and
Tamm, 2000). CD is frequently used to identify the
secondary structures of proteins or peptides under
membrane-mimicking conditions. In order to obtain
reliable information on the conformation of the pro-
tein or peptide, it is strongly recommended to record
spectra in the far-UV region, as low as 180 nm,
which precludes the use of most common buffers
and salts, and can be, in some cases, a limitation for
producing membrane-mimicking conditions. Fluo-
rescence spectroscopy is a powerful method to study
lipid–peptide and/or peptide–peptide interactions.
The use of either intrinsic fluorescence of peptides,
or of fluorescently labelled lipids or peptides, allows
the determination of the thermodynamic and kinetic
parameters of peptide–membrane interactions. Fluor-
escence quenching or FRET (fluorescence resonance
energy transfer) has been used to quantify and mon-
itor the entry of CPPs in the membrane (Deshayes
et al., 2004a; Bjorklund et al., 2006). Although
this method allows direct measurement of CPP–
membrane interactions, the choice of the fluorescent
probe is of a major importance in order to maintain
the amphipathic properties of the peptide, as large
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hydrophobic fluorescent dyes can have an impact
on both the uptake mechanism and the kinetics
of the interaction with the membrane. Mimicking
bilayer membranes remains difficult to handle, there-
fore monomolecular films have been largely used as
they constitute a good means of performing model
experiments, since the thermodynamic relationship
between monolayers and bilayer membranes is dir-
ect, and monomolecular films at the air–water inter-
face overcome limitations, such as regulation of lipid
lateral packing and lipid composition that occur in
bilayers. This technology allows the investigation of
the influence of pressure on the conformational state
of peptides, measurement of the strength and the
nature of peptide–lipid interactions (Chiang et al.,
1996; Nordera et al., 1997), and offers the advant-
age of studying mixed lipid–peptide films and vari-
ous membrane compositions in correlation with cell
types (Verger and Pattus, 1976). Monolayers also al-
low identification of the conformational state of pep-
tides and positioning by in situ observations, such as
infrared or grazing incidence X-ray diffraction. Other
techniques have also been used to monitor either the
direct interaction of CPPs with lipids or the cel-
lular uptake of CPPs, such as MS (Li et al., 2005;
Burlina et al., 2007; Palm et al., 2007), atomic force
microscopy (Deshayes et al., 2004c; Plenat et al.,
2004) and small-angle electron diffusion (Deshayes
et al., 2006; Plenat et al., 2004), which allow obser-
vation of nanometre-sized complexes and/or provide
information on topographical organization of CPP
within monolayers or bilayers. As these methods use
either different concentrations or membrane states, it
is highly recommended to describe the behaviour of
lipid-interacting peptides combining several appro-
aches to avoid misinterpretations. CPP-induced
channel formation or changes in membrane conduct-
ance can be evaluated in artificial planar lipid bilayers,
as well as by electrophysiological studies monitoring
patch-clamped Xenopus oocytes, with the major ad-
vantage of using a natural membrane, and allow the
investigation of the voltage-dependence of the CPP
mechanism (Balali-Mood et al., 2005; Deshayes et al.,
2006; Plenat et al., 2004). Combining these biophys-
ical approaches together with molecular modelling
methods constitutes a powerful means of understand-
ing the mechanism of CPPs and to either identify
new potent CPPs or optimize already described CPPs
(Thomas et al., 2006).

Structure-mediated cellular uptake of MPG
and Pep-1
The combination of the above-mentioned technolo-
gies has allowed a better insight into cellular uptake
mechanism of CPPs, in particular MPG and Pep-1. In
contrast with numerous other CPPs, both MPG and
Pep-1 peptides, associated or not with their respect-
ive cargoes, have been shown to strongly interact and
to spontaneously penetrate lipid-phase and insert into
natural membranes (Deshayes et al., 2004a, 2004b).
Both peptide families form stable 1:1 complexes with
lipids, as determined by MS (Li et al., 2005). The
peptide–lipid interactions are initiated by their hy-
drophobic domain, either the gp41 fusion sequence
of MPG or the tryptophan-rich motif of Pep-1,
which are crucial for insertion of the peptide into
the membrane, and corroborate the notion that
hydrophobic interactions between fusion proteins
and cell-membrane phospholipids initiate membrane
perturbation in the early stages of viral fusion.
Moreover, the fact that MPG and Pep-1 bind more
tightly to negatively charged lipids [DLPG (dilau-
roylphosphatidylglycerol) or DMPG (dimyristoyl-
phosphatidylglycerol)] than overall neutral zwit-
terionic ones [DLPC (dilauroylphosphatidylcholine)
and DMPC (dimyristoylphosphatidylcholine)] re-
veals that electrostatic interactions clearly play a sig-
nificant role in stabilizing peptide–lipid complexes
(Li et al., 2005). Pep-1 and MPG are extremely
versatile from the structural point of view; both
are non-structured in water at low concentrations
and their conformations are not significantly affected
on the formation of particles with their cargo. In con-
trast, NMR, CD and FTIR analysis have revealed that
the interaction of peptide carriers or of carrier–cargo
complexes with phospholipids results in folding of
the carrier, the hydrophobic N-terminal domain of
MPG and Pep-1 fold into a β-sheet structure and
an α-helix respectively, whereas the rest of the mo-
lecule (linker plus NLS) remains unstructured (De-
shayes et al., 2004a, 2004b). For both peptide fam-
ilies, folding of the N-terminal domain is a major
step in the mechanism. The helical structure of Pep-
1 and derivative peptides within the lipid phase of the
membrane is essential for its cellular uptake and the
stabilization of the Pep–cargo particles (Morris et al.,
2001; Deshayes et al., 2004a). The β-sheet struc-
ture of MPG is also a prerequisite for cellular uptake,
as slight changes in the MPG sequence introduced
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to favour a helical conformation have been reported to
strengthen interactions with the lipid moiety, but
also to reduce cellular uptake and trigger the endo-
somal pathway (Deshayes et al., 2004b; Veldhoen
et al., 2007). A potential-induced reorientation of
MPG and Pep peptides has been identified follow-
ing membrane insertion. Once the hydrogen-binding
pattern has been completed, the peptides are not fol-
ded in aqueous medium, implying that the peptide
bonds are not engaged in hydrogen bonds, thereby
precluding their insertion into the hydrophobic layer
of a membrane for energetic reasons (Wimley, 1996;
Deshayes et al., 2004a, 2004b; Plenat et al., 2004).
Due to the ability of Pep-1 and MPG to fold into
α-helical and β-sheet structures respectively, on in-
teraction with phospholipids their folding allows
their insertion into the membrane associated with a
potential-induced transmembrane orientation of the
folded hydrophobic domains. Although these pep-
tides are highly positively charged similar to other
CPPs, such as TAT or oligo-arginines, which do not
fold and therefore accumulate at the membrane sur-
face, the existence of a folded hydrophobic domain
precludes such an accumulation and favours mem-
brane insertion. The driving force which dictates the
internalization pathway (via endosomes or not) is
governed by the affinity of the carrier peptide for
phospholipids. The outer part of the ‘carrier-based
nanoparticle’, together with the cargo, plays a key
role in the interactions with the membrane and forms
transient transmembrane α-helical or β-sheet struc-
tures, depending on the carrier, which temporarily
affect the cell-membrane organization, without as-
sociated leakage or toxicity, thereby facilitating in-
sertion into the membrane and initiation of the
translocation process. The potency of the peptide to
directly interact with lipids limits their association
with proteoglycans at the surface of the cell, speeds
up cellular entry and therefore reduces the risk of up-
take through the endosomal pathway (Deshayes et al.,
2004a; Gerbal-Chaloin et al., 2007).

On the basis of both structural and biophysical
investigations, a four-step mechanism has been pro-
posed (Figure 2): (a) formation of the MPG–cargo or
Pep-1–cargo complexes involving hydrophobic and
electrostatic interactions depending on the nature
of the cargo; (b) interaction of the complex with
the external side of the cell, which involves electro-
static contacts with the phospholipid head groups;

Figure 2 Mechanism of cellular uptake of MPG–cargo or
Pep-1–cargo complexes
The MPG-/Pep-mediated cellular uptake mechanism can be

divided into six major steps. (1) Formation of the carrier—

cargo complexes through electrostatic and hydrophobic in-

teractions; (2) interaction of the carrier–cargo nanoparticles

with the cell surface involving electrostatic contacts with

proteoglycans (3), then with the phospholipid head groups;

(4) the direct interaction of the peptide with the lipid phase of

the cell membrane, together with the Rac1-associated mem-

brane dynamics, allows the insertion of the complex into the

membrane, followed by formation of transient transmembrane

β-sheet or α-helical structures; (5) finally, the Pep-1–cargo or

MPG–cargo (siRNA) complexes is released into the cytoplasm

or (6) is targeted to the nucleus or to specific organelles.

(c) insertion of the complex into the membrane,
which is associated with conformational changes that
induce membrane structure perturbations; (d) nuc-
lear targeting of the MPG–cargo complex or release
of the Pep-1–cargo complex into the cytoplasm with
partial ‘de-caging’ of the cargo.

The gates of cells: a biological point of
view
Role of proteoglycans
Proteoglycans play an essential role in the regulation
of cell-surface microdomains, and evidence for dir-
ect relationships between cytoskeletal organization
and activation of small GTPases has been clearly es-
tablished (Conner and Schmid, 2003; Eitzen, 2003).
HSPGs (heparan sulfate proteoglycans) and syn-
decans, which are the major components of the
extracellular matrix, act as anchors for many external
molecules and pathogens at the host cell surface

www.biolcell.org | Volume 100 (4) | Pages 201–217 207

Administrator
Highlight



M.C. Morris and others

(Esclatine et al., 2001; Yoneda and Couchman.,
2003). Their clustering triggers cytoskeletal remod-
elling upon activation of PKC (protein kinase C)
and Rho/Rac GTPases, which control the dynamics
of cholesterol-rich ‘raft’ microdomains, and therefore
ligand binding and cellular uptake pathways (Dehio
et al., 1998; Saoncella et al., 1999; Couchman,
2003; Beauvais and Rapraeger, 2004). The first
contacts between the CPPs and the cell surface
take place through proteoglycans. Cell-surface pro-
teoglycan clustering and remodelling of the actin net-
work serve as a ‘capture platform’, thereby triggering
the ‘onset’ of internalization of polycationic carri-
ers, such as polycationic peptides, cationic lipids and
polyethylenimide (Rusnati et al., 1999; Belting
and Peterson, 1999; Wiethoff et al., 2001). One of
the major differences between CPPs is their mode
of interaction with the cellular surface components.
The interaction of peptides, such as TAT (Console
et al., 2003; Richard et al., 2003; Wadai et al., 2004;
Murriel and Dowdy, 2006) polyarginine and pen-
etratin (Nakase et al., 2004, 2007), with the extra-
cellular matrix has been reported to be primarily elec-
trostatic and to trigger uptake through the endosomal
pathway (Rusnati et al., 1999; Murriel and Dowdy,
2006). As most probably the case for all CPPs, the up-
take mechanism of MPG and Pep-1 is also initiated by
highly dynamic electrostatic interactions with the ex-
tracellular matrix. The binding of MPG or the MPG–
cargo complex to the GAG (glycosaminoglycan) plat-
form is followed by a selective activation of the
GTPase Rac1, which allows for remodelling of the
actin network. GTPase activation and actin remodel-
ling constitute the ‘onset’ of the internalization mech-
anism and have a major impact on membrane fluidity,
thereby promoting entry of MPG or the MPG–DNA
complexes into cells (Gerbal-Chaloin et al., 2007).
Although the overall uptake mechanism is depend-
ent on the inherent properties of the peptide, we
and other groups have demonstrated a direct involve-
ment of small GTPases, mainly Rac1, in controlling
or enhancing the rate of the initial step of the up-
take mechanism (Gerbal-Chaloin et al., 2007; Nakase
et al., 2007).

Cell entry and trafficking pathways
Following binding to the GAG platform, which fa-
cilitates accumulation of the CPP and CPP–cargo
complexes at the cell surface, different cell entry

gates have been reported for different CPPs. Correla-
tion of cellular uptake with a cargo-associated biolo-
gical response is a major requirement to validate the
efficiency of a CPP, as originally established for TAT
(Wadia et al., 2004) and now extended to series of
well-known CPPs (Nakase et al., 2004; Padari et al.,
2005). Internalization mechanisms involving macro-
pinocytosis (Wadia et al., 2004; Kaplan et al.,
2005), and clathrin- and caveolin-dependent endo-
cytosis have been described (Richard et al., 2005;
Ziegler et al., 2005). Although these latter invest-
igations clearly indicate that endocytosis is involved
in the internalization of CPPs, it appears that dif-
ferent mechanisms may occur simultaneously. In the
cases of penetratin and transportan, both membrane
translocation and endocytosis have been suggested to
occur simultaneously (Letoha et al., 2003; Säälik
et al., 2004).

The ability of MPG and Pep peptides to inter-
act with the lipid moiety of the membrane has been
shown to play an essential role in their cellular up-
take route. Investigations of the ability of MPG to
transfect plasmids encoding reporter genes or siRNAs
in the presence of several inhibitors of the endosomal
pathway demonstrates that uptake of the MPG–DNA
complex that generates a biological response is inde-
pendent of the endosomal pathway, and mediated by
the membrane potential and dependent on the size
of the MPG–DNA particles (Simeoni et al., 2003;
Deshayes et al., 2004b; Munoz-Morris et al., 2007).
The NLS motif of MPG is required for both electro-
static interactions with DNA and nuclear targeting
translocation of the nucleic acid. After crossing the
cell membrane, MPG–DNA particles are able to in-
teract with the nuclear import machinery and the
presence of the NLS domain promotes rapid delivery
of the plasmid into the nucleus (Morris et al., 1999a;
Simeoni et al., 2003).

For Pep peptides, as for MPGs, we have shown that
delivery of active molecules is not associated with the
endosomal pathway and that most cargoes are rapidly
released within the cytoplasm (Morris et al., 2001;
Gros et al., 2006). Pep-1-mediated delivery of the
cell-cycle inhibitor protein p27Kip1 and the associ-
ated biological response was used to investigate the
uptake mechanism of Pep-1–cargo particles in cellulo.
Our studies demonstrate that none of the inhibitors of
the endosomal pathway affect the efficiency of Pep-1,
with the exception of energy deprivation which can
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be directly correlated to modifications of membrane
potential, which is known to be required for uptake
of CPPs (Terrone et al., 2003). Therefore uptake of
the Pep-1–cargo complex leading to a biological re-
sponse is independent of the endosomal pathway and
is directly correlated to the size of particles and the
nature of cargoes (Gros et al., 2006; Munoz-Morris
et al., 2007).

Application of MPG and Pep strategies to
the delivery of therapeutic molecules
MPG-mediated delivery for nucleic acids
In the last decade, a number of CPP-based gene de-
livery systems have been proposed to overcome both
extracellular and intracellular limitations (Morris
et al., 2000; Niidome and Huang, 2002; Järver
and Langel, 2004; Moulton and Moulton, 2004;
El-Andaloussi et al., 2005). In order to improve
nuclear delivery of cargoes (drugs or DNA), syn-
thetic peptides containing NLSs have been used
extensively (Cartier and Reszka, 2002; Escriou
et al., 2003). Several strategies have been designed
either to avoid the endosomal pathway and/or to
facilitate the escape of cargoes from early endo-
somes to prevent their degradation. Peptide carriers
that combine DNA-binding and membrane-
destabilizing properties have been developed to facil-
itate gene transfer into cultured cells and living anim-
als (Morris et al., 2000; Niidome and Huang, 2002;
Glover et al., 2005). CPPs have also been used to
improve the delivery of DNA (Branden et al., 1999;
Tung et al., 2002; Ignatovich et al., 2003; Rudolph
et al., 2003) or oligonucleotides (Moulton and
Moulton, 2004; Zatsepin et al., 2004; El-Andaloussi
et al., 2005) and have been combined with other
lipid-based non-viral methods (Torchilin, 2005).
Several CPPs have been successfully applied for the
delivery of small oligonucleotides in vivo through
covalent coupling (Gait et al., 2003; Moulton and
Moulton, 2004; Zatsepin et al., 2005). In contrast,
only a few CPPs have been validated in vivo for gene
delivery. So far, the secondary amphipathic peptide
PPTG1 constitutes one of the only examples report-
ing a significant in vivo gene expression response fol-
lowing intravenous injection (Rittner et al., 2002).

MPG technology has been applied to both plas-
mid DNA and oligonucleotide delivery with high
efficiency into a large number of cells in suspen-

sion and adherent cell lines (Morris et al., 2007b).
The ability of MPG to improve the nuclear trans-
location of nucleic acids without requiring nuc-
lear membrane breakdown during mitosis has been
reported in several protocols for gene and oligo-
nucleotide delivery on primary cell lines and non-
dividing cells (Simeoni et al., 2005; Morris et al.,
2007). As the cellular uptake mechanism and there-
fore the efficiency of MPG are directly correlated to
the MPG–cargo particle size, the procedure to pre-
pare the MPG–cargo complexes and the molar ratio
of these complexes are crucial parameters. In par-
ticular, the carrier/cargo ratio should be maintained
between 20:1 and 40:1 to avoid any aggregation, as
well as endosomal uptake, and to yield an optimal
associated biological response. MPG technology has
been reported to be a potent method for the de-
livery of unmodified antisense oligonucleotides and
full-length antisense constructs targeting the cell-
cycle regulatory protein Cdc25C (Morris et al., 1997,
1999a), locked nucleic acids, phosphorothioate oli-
gonucleotides targeting the promoter of the MDR-1
(multidrug resistance 1) promoter in human CEM
leukaemia cells (Marthinet et al., 2004; Labialle et al.,
2006) and thio-phosphoramidate telomerase tem-
plate antagonists in cancer cells (Asai et al., 2003;
Gryaznov et al., 2003).

MPG-mediated delivery of siRNAs in vitro
and in vivo
siRNAs constitute a powerful tool to silence gene
expression post-transcriptionally (Hannon, 2002;
Elbashir et al., 2001; Dorsett and Tuschl, 2004; De
Fougerolles et al., 2007). However, the major limita-
tion of siRNA applications, similar to most antisense-
or nucleic-acid-based strategies, is their poor cellu-
lar uptake associated with the poor permeability of
the cell membrane to nucleic acids. Several viral and
non-viral strategies have been proposed to improve
the delivery of either siRNA-expressing vectors or
synthetic siRNAs both in cultured cells and in vivo
(McManus and Sharp, 2002; Brummelkamp et al.,
2002; Xia et al., 2002; Hommel et al., 2003; Song
et al., 2003, 2005; Takeshita et al., 2005). The deliv-
ery of siRNAs in vivo constitutes a major challenge
and, to date, there are no universal approaches (De
Fougerolles et al., 2007) The most efficient method
for in vivo applications remains the non-viral ‘hydro-
dynamic’ tail-vein injection of mice with high doses
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of natural and modified siRNAs (McCaffrey et al.,
2002; Song et al., 2003; Lewis et al., 2002; Fountaine
et al., 2005; Soutscek et al., 2004). A strategy using
CPPs has been used for the delivery of siRNAs into
cultured cells, and siRNA covalently linked to trans-
portan (Muratovska and Eccles, 2004) and penetratin
(Davidson et al., 2004) have been associated with a
silencing response. However, non-covalent strategies
appear to be more appropriate for siRNA delivery
and yield a significant associated biological response
(Simeoni et al., 2003; Kim et al., 2006; Crombez
et al., 2007; Meade and Dowdy, 2007; Lundberg
et al., 2007; Kumar et al., 2007).

MPG forms stable non-covalent complexes with
siRNAs, increases their stability, promotes their cel-
lular uptake without the need for prior chemical co-
valent coupling and enables robust down-regulation
of target mRNAs (Simeoni et al., 2003, 2005; Morris
et al., 2007a). A variant of MPG with a single
mutation in the NLS (MPG�NLS) was designed
to favour rapid release of the siRNA into the
cytoplasm, thereby allowing for a more signi-
ficant biological response. Both peptide carri-
ers can deliver siRNA into cultured cells with
high efficiency, with a final subcellular localiza-
tion of the siRNA dependent on the MPG carrier
used. A fluorescently labelled siRNA localized rap-
idly to the nucleus when transfected with MPG,
but remained mostly in the cytoplasm with
MPG�NLS. These experiments reveal that the effi-
ciency of MPG-like peptides is similar to that of
OligofectamineTM, suggesting that MPG is able to
release the siRNA rapidly without affecting its biolo-
gical effect upon or following cellular internalization.
The MPG strategy has been used for the delivery of
siRNAs into a large range of cell lines, including
adherent cell lines, cells in suspension, cancer and
primary cell lines, which cannot be transfected us-
ing other non-viral approaches (Morris et al., 2004b;
Langlois et al., 2005; Simeoni et al., 2005; Pastore
et al., 2006; Nguyen et al., 2006). siRNA targets
localize both to the cytoplasm and to the nucleus,
depending on the mechanism involved. Tampering
with the NLS sequence of MPG allows discrimina-
tion between delivery to the nucleus and the cyto-
plasm, and to control the release of the siRNA into
the appropriate subcellular compartment (cytoplasm
or nucleus). MPG can efficiently deliver promoter-
directed siRNA into the nucleus, thereby inhibiting

transcription (Morris et al., 2004; Langlois et al.,
2005). In contrast MPG�NLS rapidly releases the
cargo into the cytoplasm. Moreover, MPG has been
successfully applied to the delivery of siRNAs into
animal models by topical intra-tumoral or systemic
intravenous injections (M.C. Morris, L. Crombez and
G. Divita, unpublished data), as well as for the de-
livery of siRNAs into mouse blastocytes (Zeineddine
et al., 2006). This technology has been applied to
target an essential cell-cycle protein, cyclin B1; intra-
venous injection of MPG–cyclin B1 siRNA particles
has been shown to efficiently block tumour growth
(Crombez et al., 2007; Morris et al., 2007b). MPG
forms highly stable nanoparticles with siRNAs with
a slow degradation rate that can be easily used for
specific targeting; these are the major advantages for
in vivo siRNA delivery over covalent CPP technolo-
gies. We have recently demonstrated that cholesterol-
and PEG-functionalized MPG nanoparticles dramat-
ically improve the efficiency of siRNA delivery in vivo
(M.C. Morris, L. Crombez and G. Divita, unpub-
lished data).

Pep-based strategy for transduction of
macromolecules
In order to circumvent problems associated with
gene-therapy technology, an increasing interest is be-
ing taken in designing novel strategies that allow the
delivery of peptides and full-length proteins into a
large number of cells (Järver and Langel, 2004; El-
Andaloussi et al., 2005; Snyder and Dowdy, 2006;
Langel, 2007; Moschos et al., 2007). CPPs have been
successfully used for the administration of large pro-
teins and peptides that exhibit a therapeutic poten-
tial in vivo. Several CPP-based covalent strategies have
been or are currently evaluated in clinical trials, prov-
ing that ‘protein therapy’ can have a major impact on
the future of therapies in a variety of viral diseases
and cancers (Snyder and Dowdy, 2006; Langel 2007).

Pep-1-mediated transduction of peptides and
proteins in vitro and in vivo
Pep-1 technology has been applied to basic research,
as well as to delivery of therapeutic peptides and
proteins, with high efficiency, into a large number
of mammalian cell lines, including non-transformed,
cancer, neuronal and primary cell lines (Morris et al.,
2001, 2006; Gallo et al., 2003). Several protocols for
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Pep-1-based peptide and protein delivery have been
described and key parameters standardized, includ-
ing the Pep-1/cargo ratio, which is directly associated
with the size of the particle and therefore the cellular
uptake mechanism. This ratio should be maintained
between 15:1 and 20:1 to avoid aggregation and pre-
cipitation, and to obtain an optimal associated bio-
logical response (Munoz-Morris et al., 2007). Pep-1
promotes the cellular uptake of small peptides and of
large proteins, independently of the size and nature
of the polypeptide and of the cell type (Gros et al.,
2006; Morris et al., 2007b). The rapid release of the
cargo into the cytoplasm allows for a rapid biological
response and limits alterations in the biological func-
tion of the cargo. Pep-1 has been shown to deliver
antibodies into cells, while preserving their ability
to recognize their target antigens, which constitutes
a major interest for therapeutic applications (Morris
et al., 2007b). Pep-1 also improves the uptake of
proteins and peptides into challenging primary cell
lines, including neurons (Gallo, 2003), macrophages
(Garnon et al., 2005), hepatocytes (Badag-Gorce
et al., 2003; Tang et al., 2007), neural retinal cells
(Gehler et al., 2004), human stem cells (Chan et al.,
2005) and pancreatic cells (Pratt and Kinch, 2002;
Pandey et al., 2003).

Pep-1 technology has been shown to be a potent
strategy for the delivery of therapeutic proteins in vivo
and can cross the blood–brain barrier (Gallo et al.,
2002; Aoshiba et al., 2003; Payne et al., 2003; Rawe
et al., 2004; Eum et al., 2004; Maron et al., 2005;
Gros et al., 2006; Jevsek et al., 2006). Several Pep-1-
based formulations for in vivo applications have been
described, including intra-venous, intra-tumoral and
intra-tracheal injections, as well as transduction into
oocytes, sprays for nasal delivery or direct penetration
through the skin. Pep-1 strategy has been applied
in vivo to the delivery of proteins into the lungs of
mice to produce alveolar wall apoptosis or to correct
defects in PKA (protein kinase A) (Aoshiba et al.,
2003; Maron et al., 2005). Pep-1 strategy was also
applied for the evaluation of the anti-tumoral activity
of peptide inhibitors of protein kinases or to repair a
defective step in a cellular signalling pathway in vivo
(Eum et al., 2004; Gros et al., 2006), as well as for the
delivery of proteins into bovine and mouse oocytes,
thereby providing an efficient means of studying early
embryonic development (Payne et al., 2003; Rawe
et al., 2004).

Pep-1-mediated transduction of biologically
active molecules
Pep-1 strategy has been extended to the delivery
of other uncharged and charged cargoes, including
siRNAs (Arita et al., 2005), DNA–protein complexes
(Morris et al., 2007b), replication-deficient viruses
(Kowolik et al., 2003), PNAs (Morris et al., 2004a),
DNA mimics (Morris et al., 2007b) and semicon-
ductor quantum dots (Mattheakis et al., 2004). Pep-2
and Pep-3 carrier peptides have been used to improve
the delivery of both uncharged PNAs and derivatives,
such as HypNA-pPNAs (trans-4-hydroxyl-L-proline–
phosphonate-PNA) (Efimov et al., 2001), into several
cell lines and in vivo (Morris et al., 2004a, 2007b).
Pep-2 strategy was applied to target essential pro-
teins in different cellular pathways in several cell lines
(Morris et al., 2004a, Nan et al., 2005). Pep-3 exhib-
its far less toxicity than other delivery systems and
is appropriate for suspension and primary cell lines
(Morris et al., 2007b). In vivo, bioavailability of DNA
mimics constitutes a major limitation in therapeut-
ics. Several CPP-based covalent approaches have been
reported for the delivery of antisense PNA (Koppel-
hus and Neilsen, 2003), however, only a few have been
used in vivo and until recently none of them were re-
ported to be active at submicromolar concentrations
(Opalinska and Gewirtz, 2002; Gait et al., 2003;
Abes et al., 2007). Pep-3–antisense HypNA-pPNA
particles targeting the cell-cycle regulatory protein
cyclin B1 were successfully applied in vivo through
intra-tumoral and intra-venous administration, and
were found to inhibit tumour growth as efficiently
as proven siRNA molecules (Morris et al., 2007b).
PEGylation of the carrier improves the efficacy of the
response by stabilizing the complexes. The study by
Morris et al. (2007b) shows that such a modifica-
tion significantly improves Pep-3 for in vivo systemic
administration, allowing us to reduce the dose re-
quired to induce a specific and robust biological re-
sponse, thereby limiting non-specific cytotoxic effects
described upon treatment with high concentrations
of PNAs. Together, these data reveal that Pep-3 con-
stitutes an excellent candidate for in vivo delivery of
charged PNA and DNA mimics.

Conclusions and perspectives
The dramatic acceleration in the discovery of new and
highly potent therapeutic molecules which do not,
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however, make it into the clinic due to poor delivery,
low bioavailability and lack of rational targeting has
made it clear that delivery was a keystone to thera-
peutic development (Kong and Moorey, 2007). To cir-
cumvent these problems studies have been focused on
improving the chemistry of these molecules, and sev-
eral delivery systems have recently been developed. A
suitable drug carrier should (1) be biodegradable and
biocompatible, (2) lack intrinsic toxicity and anti-
genicity, (3) show no accumulation in the body,
(4) bear adequate functional groups for chemical
fixation, (5) retain the original specificity for the tar-
get and (6) maintain the original activity of the de-
livered drug until it reaches the site of action. Accord-
ingly, carrier peptides represent a new and innovative
concept to bypass the problem of bioavailability of
certain drugs, such as peptides, proteins and nucleic
acids, which are currently rarely considered as thera-
peutics due to the above-mentioned limitations.

A large number of CPPs have been described that
can be covalently attached to biomolecules and im-
prove their delivery both into cultured cells and
animal models. In order to offer an alternative to
covalent strategies, we have proposed a new potent
strategy for the delivery of cargoes into mammalian
cells, on the basis of a short amphipathic peptide
carrier, which can form stable nanoparticles with car-
goes without the need for cross-linking or chemical
modifications (Morris et al., 2006; Gros et al., 2006;
Munoz-Morris et al., 2007). MPG and Pep techno-
logies have been successfully applied to the delivery
of different cargoes (siRNA and peptides) in primary
cell lines and in vivo. These peptide-based strategies
present several advantages, including rapid delivery
of cargoes into cells with very high efficiency, stabil-
ity in physiological buffers, lack of toxicity and of
sensitivity to serum. Moreover, the lack of prerequis-
ites for covalent coupling upon formation of carrier–
macromolecule particles favours the intracellular traf-
ficking of the cargo and enables its controlled release
into the target cellular compartment. The final local-
ization of the delivered macromolecule is then de-
termined by its inherent intracellular targeting prop-
erties. A major concern with the cellular uptake of
CPPs is to avoid the endosomal pathway or to favour
escape of the cargo from early endosomes. In many
cases, the secondary structure of peptides is critical
and is directly correlated to their mode of membrane
interaction. Key parameters need to be taken into ac-

count in the design of a non-covalent peptide-based
delivery strategy, including the secondary structure
of the carrier, the presence of a critical number of
charged and aromatic residues, as well as the size and
the stability of the carrier–cargo particles. In partic-
ular, for non-covalent strategies, there is a direct cor-
relation between biological efficiency, carrier–cargo
affinity, complex stability, particle size and homo-
geneity. MPG and Pep-1 behave significantly differ-
ently from other similarly designed CPPs. Although
we cannot exclude the possibility that the uptake of
MPG or Pep-1 follows several routes, we have shown
that the major cell translocation mechanism is in-
dependent of the endosomal pathway and involves
transient membrane disorganization associated with
folding of the carrier into either an α-helical or β-
sheet structure within the phospholipid membrane.

In conclusion, both MPG and Pep-1 technolo-
gies constitute an excellent alternative to covalent
strategies and will have a major impact on the
application of siRNAs, proteins and peptides for fu-
ture therapies. These technologies are powerful tools
for basic research and for targeting specific cellular
events both in vitro and in vivo, as well as in a thera-
peutic context for screening potential therapeutic
molecules. Moreover, functionalization of MPG- and
Pep-1-based nanoparticles will be of major interest
for rational targeting and systemic application of
therapeutic molecules in vivo.
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