
Elevated Stearoyl-CoA Desaturase in Brains of Patients
with Alzheimer’s Disease
Giuseppe Astarita1,2, Kwang-Mook Jung1, Vitaly Vasilevko3, Nicholas V. DiPatrizio1, Sarah K. Martin4,

David H. Cribbs3, Elizabeth Head4, Carl W. Cotman3, Daniele Piomelli1,2,5*

1 Department of Pharmacology, University of California Irvine, Irvine, California, United States of America, 2 Unit of Drug Discovery and Development, Italian Institute of

Technology, Genoa, Italy, 3 Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California, United States of America,

4 Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America, 5 Department of Biological Chemistry, University of California

Irvine, Irvine, California, United States of America

Abstract

The molecular bases of Alzheimer’s disease (AD) remain unclear. We used a lipidomic approach to identify lipid
abnormalities in the brains of subjects with AD (N = 37) compared to age-matched controls (N = 17). The analyses revealed
statistically detectable elevations in levels of non-esterified monounsaturated fatty acids (MUFAs) and mead acid (20:3n-9) in
mid-frontal cortex, temporal cortex and hippocampus of AD patients. Further studies showed that brain mRNAs encoding
for isoforms of the rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA desaturase (SCD-1, SCD-5a and SCD-5b), were
elevated in subjects with AD. The monounsaturated/saturated fatty acid ratio (‘desaturation index’) – displayed a strong
negative correlation with measures of cognition: the Mini Mental State Examination test (r = 20.80; P = 0.0001) and the
Boston Naming test (r = 20.57; P = 0.0071). Our results reveal a previously unrecognized role for the lipogenic enzyme SCD
in AD.
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Introduction

Alzheimer’s disease (AD), the most common cause of adult

dementia, is characterized by progressive memory impairment,

deterioration of language, and visuospatial deficits [1]. Age is the

most important factor that predisposes persons to the non-familial

(‘sporadic’) form of this disease, which affects an estimated 35

million of elderly people worldwide [2]. It is still unknown how

aging interacts with other risk factors of AD – such as abnormal

accumulation of Ab peptides and hyperphosphorylated tau protein

in the brain [1]. Nevertheless, it is clear that the development of

AD can be influenced by a variety of age-related conditions that

are closely associated with systemic dysfunctions in metabolism –

including obesity, diabetes and atherosclerosis [3,4,5]. In partic-

ular, there is evidence suggesting a link between alterations in lipid

metabolism and AD. For example, the inheritance of certain

isoforms of the lipid-carrier protein, apolipoprotein E (ApoE), is

known to increase the risk of AD [6]. Moreover, post mortem

analyses of frozen brain samples have documented the existence of

multiple lipid abnormalities in AD patients, including changes in

ceramides, n-3 polyunsaturated fatty acids (PUFA) and PUFA-

derived signaling lipids [7,8,9,10,11].

In the present study, we utilized a lipidomic approach to identify

novel lipid alterations in brain tissue of subjects with AD. We used

liquid chromatography/mass spectrometry (LC/MS) to survey

frozen brain samples from clinically characterized AD patients and

age-matched controls. We found that the levels of nervonic acid

(24:1n-9) and other monounsaturated fatty acids (MUFAs) are

markedly increased in brain tissue of AD patients. This increase

was strongly associated with cognitive dysfunction and was

accompanied by enhanced transcription in brain tissue of the

rate-limiting enzyme in MUFAs biosynthesis, stearoyl-CoA

desaturase (SCD) [12,13,14,15,16,17,18].

Results

To identify novel molecular alterations in AD, we compared

lipid profiles of mid-frontal cortex samples from 17 control subjects

and 37 AD patients. The demographic and neuropathological

characteristics of the subjects with AD and the control subjects

used in this study are shown in Table 1. The groups were closely

matched for age and post mortem interval. We extracted tissue

lipids with organic solvents and analyzed the extracts by LC/MS

using an untargeted approach in which we first acquired data

relative to all detectable molecular species of m/z 250–500, and

then compared data sets obtained from AD and control subjects

using algorithms for noise suppression and subtraction of similar

molecular features [19]. A representative example of these initial

analyses is reported in Fig. 1A. The results suggested that a

molecular species of m/z 365.3 and retention time 18 min was

elevated in AD patients, compared to controls (Fig. 1A, arrow).

Further LC/MSn characterization and comparison with an

authentic standard identified this molecule as nervonic acid

(Fig. 1B), a long-chain MUFA (24:1n-9) that is particularly
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abundant in brain sphingolipids. Subsequent quantitative mea-

sures confirmed that nervonic acid levels were significantly

elevated in the mid-frontal and temporal cortices of subjects with

AD, relative to control subjects (Fig. 1C,D). No such difference

was observed in cerebellum (Fig. 1E).

The biosynthesis of nervonic acid starts with the desaturation of

stearic acid (18:0) into oleic acid (18:1n-9) catalyzed by SCD

activity and proceeds through a series of elongation steps that lead

to the production of nervonic and ximenic acid (26:1n-9) (Fig. 2A).

Collateral pathways initiated by SCD convert palmitic acid (16:0)

into palmitoleic acid (16:1n-7) and stearic acid (18:0) into mead

acid (20:3n-9) (Fig. 2A). To determine whether nervonic acid

biosynthesis is up-regulated in AD, we quantified these metabolic

intermediates and found their levels to be increased in mid-frontal

cortex, temporal cortex, and hippocampus of AD patients

compared to controls (Tables 2, 3, 4). By contrast, no changes in

MUFA content were found in cerebellum (Table 5). Moreover,

there were no differences in the levels of saturated fatty acids

(SFAs) between subjects with AD and control subjects (Table 2, 3,

4, 5). The ratio between monounsaturated fatty acids (16:1n-7,

18:1n-9) and their saturated precursors (16:0, 18:0) (‘desaturation

index’) – was significantly higher in mid-frontal cortex, temporal

cortex and hippocampus of subjects with AD compared to control

subjects (Table 2, 3, 4). Confirming previous work [20], we

recently reported that levels of docosahexaenoic acid (DHA) are

decreased in the brains of AD subjects compared to controls [9].

Here, we found a marginal, albeit statistically significant

correlation between the desaturation index (16:1/16:0) and

DHA levels (P,0.049; r = 20.27) in the mid-frontal cortex of

subjects with AD relative to controls.

These results identify a previously unrecognized increase in

MUFAs levels in the brains of AD patients, suggesting that brain

SCD expression might also be elevated in these subjects. This

possibility was confirmed by quantitative RT-PCR analyses, which

showed that levels of mRNA encoding for SCD-1, SCD-5a and

SCD-5b – three SCD isoforms present in the human brain [13,21]

– were elevated in hippocampus of AD patients (Fig. 2B–D). In

mid-frontal cortex, only the mRNA encoding for SCD-5b was

found to be increased (Fig. 2E).

To determine whether the increase in free nervonic acid is due

to an up-regulation of MUFA biosynthesis or MUFA release from

sphingolipids, we measured the levels of nervonic acid-containing

molecular species in the mid-frontal cortex of subjects with AD

compared to control subjects. No changes were observed in the

levels of selected ceramide, sphingomyelin, and cerebroside species

(Fig. 3). These findings support the conclusion that AD might be

associated with an up-regulation of MUFA biosynthesis, rather

than a non-specific alteration in sphingolipid content. We cannot

exclude, however, the possibility that the effects observed here

might be due, at least in part, to changes in the gray/white matter

ratio between controls and subjects with AD.

Next, to explore the clinical significance of our findings, we

searched for statistical correlations between MUFA levels and

measures of cognitive function. We found that the desaturation

index (16:1/16:0) in mid-frontal cortex displayed a strong negative

correlation with cognitive scores from two standard neuropsycho-

metric tests: the Mini-Mental Status Examination test (which

assesses global cognition; r = 20.80; P = 0.0001) and the Boston

Naming test (which assesses language facility; r = 20.57;

P = 0.0071) (Fig. 4). These findings point to the existence of a

functional link between heightened MUFA levels in the brain and

deterioration of mental functions in subjects with AD. The results

do not establish, however, whether this link represents causation,

and do not elucidate the molecular mechanisms responsible for

increased MUFA levels in AD.

SCD is a key lipogenic enzyme. Indeed, by converting SFAs

into MUFAs, SCD provides preferred substrates for the acyl-

CoA:cholesterol acyl transferase (ACAT), an enzyme that

catalyzes the conversion of cholesterol into cholesteryl esters.

ACAT inhibitors are potent hypolipidemic and antiatherosclerotic

drugs, which might also reduce AD pathology [22,23,24]. To

determine whether the observed increase in MUFAs availability

affected cholesterol homeostasis in AD, we measured the levels of

both cholesteryl esters and cholesterol by LC/MS. We found that

the levels of cholesteryl esters and the cholesteryl esters/cholesterol

ratio were increased in mid-frontal cortex of subjects with AD

compared to control subjects (Fig. 5). These results highlight a

potential role played by SCD in the regulation of cholesterol

homeostasis in AD brain. In contrast, no changes were observed

for total triglycerides (TG) in mid-frontal cortex of subjects with

AD compared to control subjects [25,26].

Discussion

Our results identify a previously unrecognized alteration in the

neural lipidome, which appears to be associated with AD. Using an

untargeted lipidomic strategy, we found that the levels of nervonic

acid and other MUFAs produced by SCD are markedly elevated in

frozen brain samples from AD patients, compared to age-matched

control subjects, and that these changes strongly correlate with

cognitive impairment. We further found that the transcription of

three SCD isoforms present in the human brain – SCD-1, SCD-5a

and SCD-5b – is heightened in AD. These findings reveal an

unexpected role for brain MUFAs and SCD in AD.

Although the functional consequences of elevated brain MUFA

levels are unclear at present, peripheral SCD is recognized to be a

critical control point in the development of metabolic diseases.

Elevated levels of SCD activity and desaturation index appear to

be associated with key aspects of the metabolic syndrome – insulin

resistance, abdominal adiposity and hyperlipidemia – and have

been proposed as biological markers for this condition [13,

14,15,17,18,26]. Furthermore, animal studies have shown that

SCD-derived palmitoleate (16:1n-7) participates as a blood-borne

Table 1. Demographic and neuropathological features of the
subjects used in this study.

AD patients Control subjects

Total number 37 (all Caucasian) 17 (all Caucasian)

Sex (male/female) 20/17 10/7

Age (years)
Age range (years)

80.467.3
63–95

80.468.5
64–96

Post mortem interval (hours) 4.261.7 4.461.5

Plaque score (CERAD)
Range: 0–3 (Stage 0-C)

2.7660.10 0.3360.21

Tangle score (Braak and Braak)
Range: 0–6 (Stage 0-VI)

5.6760.11 2.3360.21

MMSE score 11.467.2 28.361.8

Body weight (lb) 145.3634.6 (N = 31) 171.261.4 (N = 2)

Brain hemisphere (left/right) 19/18 8/7; NA (N = 2)

Freezer storage duration (years) 5.662.4 7.663.8

Plus-minus values are means 6 SD.
Abbreviations: CERAD, Consortium to Establish a Registry for AD; MMSE, Mini-
Mental Status Examination; NA, not available.
doi:10.1371/journal.pone.0024777.t001
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messenger in the control of energy homeostasis and insulin

resistance [27]. Because of these discoveries, SCD has recently

emerged as a possible target for the treatment of diabetes,

hyperlipidemia and obesity [28,29,30].

Two distinct SCD isoforms (SCD-1 and SCD-5) are expressed

in human tissues, but little is known about the substrate specificity

and functional roles of these variants. Human SCD-1 shares about

85% amino-acid identity with the four known rodent isoforms and

is highly expressed in brain, liver and adipose tissue [31]. By

contrast, human SCD-5 isoforms have limited homology with

rodent SCD and are predominantly expressed in brain and

pancreas [21,32]. Previously studies have documented a progressive

increase in MUFA levels and SCD-1 expression in human frontal

cortex during normal aging and in patients with bipolar disorder

[33]. Such an increase was paralleled by lowered levels of the n-3

polyunsaturated fatty acid, DHA [34], which is consistent with the

ability of polyunsaturated fatty acids (PUFAs) to negatively regulate

SCD expression [35]. In agreement with those data, previous work

from our laboratory and others has reported that free DHA levels

are markedly decreased in the brain of subjects with AD [9,20].

Notably, the up-regulation of MUFA levels was accompanied by

an increase in mead acid (20:3n-9) (Tables 2, 3, 4), which is the only

non-essential PUFA that can be synthesized through a de novo

pathway, in which SCD appear to be the rate-limiting enzyme

(Fig. 2A). In conditions of DHA deficit, mead acid could contribute

to maintain a homeostasis in the unsaturation level of the cellular

Figure 1. Untargeted lipidomic analyses. Representative mirror-display images and differential LC/MS analysis of lipids from a subject with AD
and a control subject. The component detected as being qualitatively different between the two samples (Panel A, arrow), was subsequently
identified as nervonic acid, using LC/MS2 (Panel B). Quantitative measures of nervonic acid in mid-frontal cortex (Panel C), temporal cortex (Panel D)
and cerebellum (Panel E) from control subjects (open squares) and AD patients (closed circles). Two-tailed Welch’s t-test.
doi:10.1371/journal.pone.0024777.g001
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Figure 2. Overview of MUFAs biosynthesis and levels of SCD mRNA in the brain of subjects with AD and control subjects. Palmitic
acid (16:0) is transformed into palmitoleic acid (16:1n-7) by the action of SCD (Panel A). Palmitic acid can also be transformed into stearic acid (18:0)
by elongase activity (such as those encoded by ELOVL genes) and subsequently into oleic acid (18:1) by SCD activity (Panel A). Oleic acid can be then
converted into longer chain fatty acids by sequential action of elongases and D5 and D6 desaturases (encoded by the FASD1 and FASD2 genes,
respectively, Panel A). Levels of mRNA for SCD-1 (Panel B), SCD-5a (Panel C) and SCD-5b (Panel D) in hippocampus and SCD-5b (Panel E) in mid-frontal
cortex from control subjects (N = 17, open squares) and AD patients (N = 28, closed circles). Two-tailed Welch’s t-test.
doi:10.1371/journal.pone.0024777.g002

Table 2. Levels of MUFAs and mead acid (nmol/g) in mid-frontal cortex of control subjects and subjects with AD.

Fatty acid Control subjects Subjects with AD Adjusted Difference P-value

Mean ± SD; N = 17 Mean ± SD; N = 37 (95% CI)

16:1 17.5161.22 21.6760.89 24.16 (27.25, 21.07 ) 0.010

18:1 171.7067.54 193.3367.5 221.64 (243.12, 20.15 ) 0.048

20:1 10.1160.58 12.9360.95 22.82 (25.11, 20.52 ) 0.017

22:1 0.8560.10 1.8160.25 20.95 (21.48, 20.42 ) 0.0007

24:1 1.8960.14 4.1660.50 22.26 (23.29, 21.23 ) ,0.0001

26:1 1.5060.17 3.5760.40 22.08 (22.95, 21.21 ) ,0.0001

MUFAs 203.669.30 237.569.90 233.91 (261.30, 26.51 ) 0.016

20:3 n-9 4.1660.33 7.3660.81 23.20 (24.96, 21.43 ) 0.0007

16:0 156.2065.87 162.0064.98 25.84 (221.54, 9.85) 0.45

18:0 252.4068.67 249.2068.62 3.22 (221.54, 227.99) 0.79

20:0 1.5560.15 1.8860.11 20.33 (20.72, 0.047) 0.083

22:0 0.7160.10 0.9260.065 20.21 (20.46, 20.043) 0.10

SFAs 409.9614.90 405.5614.27 4.39 (237.56, 46.34) 0.83

16:1/16:0 0.1160.0040 0.1360.0040 20.024 ( 20.037, 20.011 ) 0.0008

18:1/18:0 0.6860.020 0.7860.022 20.095 (20.15, 20.035 ) 0.0027

MUFAs/SFAs 0.5060.015 0.5960.021 20.095 (20.15, 20.042 ) 0.0007

Abbreviations: CI, confidence interval. P values for differences between means were computed by linear regression analysis for each fatty acid after adjustment for age,
gender, and post mortem interval.
doi:10.1371/journal.pone.0024777.t002
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membranes. Therefore, together with increased MUFA levels and

decreased DHA levels, an elevation in the levels of mead acid might

serve as an additional biological marker for AD.

As with all observational studies, there is the possibility that

unmeasured factors may explain our results, even though we chose

a priori to adjust for the three most likely confounders – age,

gender and post mortem interval. For example, medication history

was only partly available for our subject groups and additional

work is needed, therefore, to evaluate its potential impact.

Furthermore, although we paid particular attention in using

exclusively gray matter that was appropriately dissected by an

experienced neuropathologist, we cannot exclude the possibility

Table 3. Levels of MUFAs and mead acid (nmol/g) in temporal cortex of control subjects and subjects with AD.

Fatty acid Control subjects Subjects with AD Adjusted Difference P-value

Mean ± SD; N = 17 Mean ± SD; N = 37 (95% CI)

16:1 14.1861.07 14.6260.71 20.43 (23.10, 2.23) 0.74

18:1 192.5610.35 190.268.04 2.34 (224.56, 29.23) 0.86

20:1 9.6460.81 11.0961.15 21.45 (24.30, 1.40) 0.31

22:1 2.1160.22 2.5160.31 20.40 (21.17, 0.38) 0.31

24:1 2.0060.30 3.5960.55 21.59 (22.87, 20.32) 0.015

26:1 1.1160.30 2.2660.48 21.14 (22.29, 0.0012) 0.050

MUFAs 221.6612.19 224.7610.43 23.09 (235.85, 29.67) 0.85

20:3 n-9 4.0760.42 6.2460.70 22.18 (23.81, 20.54) 0.010

16:0 164.267.80 153.265.32 10.93 (28.60, 30.46) 0.26

18:0 279.3616.66 249.269.37 30.08 (29.80, 69.95) 0.13

20:0 2.3160.24 2.2060.14 0.12 (20.46, 0.70) 0.68

22:0 2.0360.82 1.2160.17 0.82 (20.99, 2.64) 0.35

SFAs 447.8624.15 405.9614.22 41.94 (216.53, 100.4) 0.15

16:1/16:0 0.08360.0040 0.09660.0033 20.012 (20.023, 20.0016) 0.025

18:1/18:0 0.7060.024 0.7860.028 20.079 (20.15, 0.0058) 0.035

MUFAs/SFAs 0.5060.014 0.5660.020 20.061 (20.11, 20.013) 0.014

Abbreviations: CI, confidence interval. P values for differences between means were computed by linear regression analysis for each fatty acid after adjustment for age,
gender, and post mortem interval.
doi:10.1371/journal.pone.0024777.t003

Table 4. Levels of MUFAs and mead acid (nmol/g) in hippocampus of control subjects and subjects with AD.

Fatty acid Control subjects Subjects with AD Adjusted Difference P-value

Mean ± SD; N = 17 Mean ± SD; N = 37 (95% CI)

16:1 8.7060.68 19.8061.04 211.10 (213.61, 28.58 ) ,0.0001

18:1 141.3613.27 180.7610.95 239.39 (274.29, 24.48) 0.028

20:1 5.8260.43 8.216065 22.40 (23.99, 20.80) 0.0042

22:1 2.2760.33 2.7560.36 20.47 (21.46, 0.51) 0.34

24:1 4.2760.93 3.4060.44 0.86 (21.26, 2.99) 0.41

26:1 6.3561.34 4.8260.72 1.54 (21.67, 4.74) 0.33

MUFAs 167.7615.73 219.6613.35 251.99 (293.85, 210.12) 0.029

20:3 n-9 15.3462.11 22.9862.41 27.63 (214.10, 1.17) 0.022

16:0 154.80610.50 171.5067.44 216.67 (242.67, 9.57) 0.20

18:0 262.80621.19 241.31611.16 21.53 (228.80, 70.85) 0.38

20:0 5.7860.68 4.0360.21 1.75 (20.28, 3.23) 0.022

22:0 1.9960.33 1.1960.074 0.80 ( 0.092, 1.50) 0.029

SFAs 425.4632.10 418.01618.46 7.41 (268.72, 83.55) 0.84

16:1/16:0 0.05860.0044 0.1260.0049 20.059 (20.072, 20.046) ,0.0001

18:1/18:0 0.5560.047 0.7560.030 20.20 (20.31, 20.085) 0.0013

MUFAs/SFAs 0.4160.0038 0.5260.0020 20.11 (20.20, 20.032) 0.0086

Abbreviations: CI, confidence interval. P-values for differences between means were computed by linear regression analysis for each fatty acid after adjustment for age,
gender, and post mortem interval.
doi:10.1371/journal.pone.0024777.t004
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that altered axonal myelination could contribute to the elevation

in MUFA levels observed in AD brains. Despite these limitations,

our study does point to a previously unrecognized connection

between cognitive impairment in AD and up-regulation of the

lipogenic enzyme SCD. Future investigations need to explore the

molecular basis for this putative association as well as its possible

implications in the diagnosis and treatment of AD.

Materials and Methods

Human brain tissue procurement
We used frozen brain samples from a total of 17 non-demented

control subjects and 37 pathologically confirmed subjects with AD

(males/females: control subjects, 10/7; subjects with AD, 20/17),

provided by the Institute for Brain Aging and the Dementia and

Alzheimer’s Disease Research Center at the University of

California, Irvine. Average sample weight was 36.861.0 mg,

mean6SEM (N = 54). Four brain areas rich in gray matter were

selected for analysis: mid-frontal cortex (Brodmann area 9),

temporal cortex (Brodmann area 20), hippocampus (Brodmann

area 34) and cerebellum. Subjects were matched for age (in years:

control subjects, 80.468.5; subjects with AD, 80.467.3) and post

mortem interval (in hours: control subjects, 4.461.5; subjects with

AD, 4.261.7). AD cases met the National Institute on Aging-

Reagan Institute criteria for intermediate or high likelihood of AD.

Psychometric tests were used for correlative analyses when

Table 5. Levels of MUFAs and mead acid (nmol/g) in cerebellum of control subjects and subjects with AD.

Fatty acid Control subjects Subjects with AD Adjusted Difference P-value

Mean ± SD; N = 17 Mean ± SD; N = 37 (95% CI)

16:1 16.4561.34 17.4260.60 20.97 (24.012, 2.07) 0.52

18:1 253.2618.90 230.366.84 22.83 (219.25, 64.90) 0.27

20:1 17.3361.82 15.4760.78 22.26 (22.26, 5.98) 0.36

22:1 2.7160.29 3.4060.65 20.68 (22.12, 0.76) 0.34

24:1 4.360.50 3.5660.34 0.71 (20.52, 1.94) 0.25

26:1 4.1660.55 4.3260.57 20.15 (21.757, 1.45) 0.85

MUFAs 290.2622.27 273.768.09 16.44 (232.99, 65.88) 0.50

20:3 n-9 6.1660.65 7.6060.43 21.43 (23.03, 0.16) 0.077

16:0 204.1618.36 198.367.87 5.85 (235.95, 47.65) 0.77

18:0 395.7626.25 367.4611.90 28.35 (231.78, 88.48) 0.34

20:0 3.8960.44 3.3360.29 0.56 (20.53, 1.64) 0.30

22:0 1.7160.21 1.5760.16 0.14 (20.42, 0.69) 0.62

SFAs 605.5643.45 570.6617.63 34.89 (263.62, 133.4) 0.47

16:1/16:0 0.08060.0047 0.09260.0025 20.011 (20.022, 20.00022) 0.046

18:1/18:0 0.6260.029 0.6360.014 20.010 (20.077, 0.057) 0.76

MUFAs/SFAs 0.4860.021 0.4860.0092 20.0019 (20.049, 0.046) 0.94

Abbreviations: CI, confidence interval. P values for differences between means were computed by linear regression analysis for each fatty acid after adjustment for age,
gender, and post mortem interval.
doi:10.1371/journal.pone.0024777.t005

Figure 3. Levels of nervonic acid-containing lipids in the brain of subjects with AD and control subjects. Levels of ceramide d18:1/24:1
(Panel A), sphingomyelin d18:1/24:1 (Panel B), hexosylceramide d18:1/24:1 (Panel C) in mid-frontal cortex from control subjects (N = 17, open squares)
and AD patients (N = 37, closed circles). Two-tailed Welch’s t-test.
doi:10.1371/journal.pone.0024777.g003
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available and were assessed 44.3635.9 months before death for

control subjects and 11.066.2 months before death for subjects

with AD. All subjects and their caregivers (when appropriate)

provided informed written consent for both the clinical examina-

tion as well as for brain donation at the University of California

Irvine. The protocols and informed consent have been approved

by the University of California Irvine Institutional Biosafety

Committee.

Lipid extractions
Lipid extractions were conducted as described [36]. Briefly,

frozen brain samples were rapidly weighed and homogenized in

ice-cold methanol containing appropriate internal standards (listed

below). Lipids were extracted by adding chloroform and water (2/

1, vol/vol) and fractionated through open-bed silica gel columns

by progressive elution with chloroform/methanol mixtures.

Fractions eluted from the columns were dried under nitrogen,

reconstituted in chloroform/methanol (1:4, vol/vol; 0.1 ml) and

subjected to LC/MS.

Untargeted lipidomic analyses
Unbiased lipidome-wide analyses were conducted using an

Agilent 1100-LC system coupled to an ion-trap XCT mass

detector equipped with an electrospray ionization (ESI) interface

(Agilent Technologies, Inc., Palo Alto, CA). Lipid extracts were

separated on a XDB Eclipse C18 column (5064.6 mm i.d.,

1.8 mm, Zorbax, Agilent Technologies) and they were eluted with

a gradient of methanol in water (from 60% to 100% methanol in

20 min) at a flow rate of 1 ml/min. Column temperature was kept

at 30uC. Capillary voltage was set at 3 kV and fragmentor voltage

was 120 V. N2 was used as drying gas at a flow rate of 13 liters/

min and a temperature of 350uC. Nebulizer pressure was set at 60

PSI. Lipids were analyzed in full scan mode from 250 to 500 mass-

to-charge ratio (m/z) in both positive and negative ionization

mode. Data analyses, which consisted in application of algorithms

for noise and background reduction and differential comparative

analyses, were performed using MS Processor from Advanced

Chemistry Development, Inc. (Toronto, Canada). The COM-

PARELCMS input parameters were as follows: MCQ thresh-

Figure 4. Correlation between brain MUFA levels and cognitive function in subjects with AD and control subjects. Correlation
between desaturation index (16:1/16:0) in mid-frontal cortex and most recent neuropsychometric scores from control subjects (open squares) and
subjects with AD (closed circles). There were significant correlations between individual desaturation indices and available Mini-Mental State
Examination scores (Panel A) and Boston Naming Test scores (Panel B). Partial correlation analysis after adjustment for age, gender and post mortem
interval.
doi:10.1371/journal.pone.0024777.g004

Figure 5. Levels of cholesteryl esters and TG in the brain of subjects with AD and control subjects. Levels of total cholesteryl esters
(Panel A), cholesteryl esters to cholesterol ratio (Panel B) and total TGs (Panel C) in mid-frontal cortex from control subjects (N = 17, open squares) and
AD patients (N = 37, closed circles). Two-tailed Welch’s t-test.
doi:10.1371/journal.pone.0024777.g005
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old = 0; Smoothing Window Width = 3; Noise Level = 20 scans;

Peak Width = 20 scans; Delta Scan Level = 3 scans; Ratio

Level = 5; Additional Data Reduction = ON; Baseline Correc-

tion = OFF. The processing took approximately 120 seconds on a

Pentium IV 1.5 GHz computer.

Targeted lipidomic analyses
Lipid molecular species were quantified by normalizing the

individual molecular ion peak intensity with an internal standard

for each lipid class. A mixture of non-endogenous molecules was

used as internal standards and added before the extraction process

to allow lipid levels to be normalized for both extraction efficiency

and instrument response.

Fatty acids. Fatty acids were quantified with an Agilent 1100

liquid chromatograph coupled to a 1946D mass detector equipped

with an electrospray ionization interface (Agilent Technologies,

Palo Alto, CA). A reversed-phase XDB Eclipse C18 column

(5064.6 mm i.d., 1.8 mm, Zorbax, Agilent Technologies) was

eluted with a linear gradient from 90% to 100% of A in B for

2.5 min at a flow rate of 1.5 ml/min with column temperature at

40uC. Mobile phase A consisted of methanol containing 0.25%

acetic acid and 5 mM ammonium acetate; mobile phase B

consisted of water containing 0.25% acetic acid and 5 mM

ammonium acetate. Column temperature was kept at 40uC. Mass

detection was in the negative ionization mode, capillary voltage

was set at 24.0 kV and fragmentor voltage was 120 V. Nitrogen

was used as drying gas at a flow rate of 13 liters/min and a

temperature of 350uC. Nebulizer pressure was set at 60 pounds

per square inch. For quantification purposes, the deprotonated

pseudo-molecular ions [M-H]2 of the fatty acids were monitored

in the selected ion-monitoring mode, using d8-arachidonic acid

(Cayman Chemical, Ann Arbor, MI) as internal standard (m/

z = 311.3). Commercially available fatty acids (Nu-Chek Prep,

Elysian, MN, Cayman Chemical or Sigma-Aldrich, St Louis, MO)

were used as references.

Sphingolipids. Sphingolipid molecular species were

analyzed by tandem mass spectrometry, using an Agilent 1100

liquid chromatograph coupled to an electrospray ionization-ion-

trap XCT mass detector. Ceramides were separated on a

Poroshell 300 SB C18 column (2.1675 mm i.d., 5 mm; Agilent

Technologies) maintained at 30uC. A linear gradient of methanol

in water containing 5 mM ammonium acetate and 0.25% acetic

acid (from 80% to 100% of methanol in 3 min) was applied at a

flow rate of 1 ml/min. Detection was in the positive mode,

capillary voltage was 4.5 kV, skim1 240 V, and capillary exit

2151 V. N2 was used as drying gas at a flow rate of 12 L/min,

temperature of 350uC, and nebulizer pressure of 80 psi. Helium

was used as collision gas. Nervonic-acid containing ceramide was

identified by comparison of its LC retention time and MSn

fragmentation pattern with that of an authentic standard (Avanti

Polar Lipids). Extracted ion chromatograms were used to quantify

ceramide d18:1/24:1 [M+H]+ (m/z = 648.6.630.8.264.3), using

ceramide d18:1/12:0 [M+H]+ (m/z = 482.5.464.5.264.3) as an

internal standard. Complex sphingolipids were separated using a

reversed-phase Poroshell 300SB C18 column (2.1675 mm i.d.,

5 mm, Agilent) and eluted with a linear gradient from 85% to

100% of mobile phase A in B in 5 min at a flow rate of 1.0 ml/

min with column temperature at 50uC. Mobile phase composition

was as described above. The capillary voltage was set at 24.0 kV

and skimmer voltage at 240 V. Nitrogen was utilized as drying

gas at a flow rate of 10 liters/min, temperature at 350uC and

nebulizer pressure at 60 pounds per square inch. Helium was the

collision gas and fragmentation amplitude was set at 1.2 V. Mass

detection was set in either positive or negative ionization mode

and was controlled by the Agilent/Bruker Daltonics software

version 5.2. Sphingolipids were identified using reference

standards (Avanti Polar Lipids) and quantified by multiple

reaction monitoring as follows: sphingomyelin d18:1/24:1 [M]+

(m/z = 813.8.754.8), hexosylceramide d18:1/24:1 [M-H]2 (m/

z = 808.8), using sphingomyelin d18:1/12:0 [M]+ (m/

z = 647.8.588.8) and glucosylceramide d18:1/12:0 [M-H]2 (m/

z = 642.8) as internal standards.

Cholesterol and triacylglycerols (TGs). We used an

Agilent 1100-LC system coupled to a MS detector Ion-Trap

XCT interfaced with atmospheric pressure chemical ionization

(Agilent Technologies). Lipids were separated on a Poroshell

300SB C18 column (2.1675 mm i.d., 5 mm, Agilent Technologies)

at 50uC. A linear gradient of methanol in water containing 5 mM

ammonium acetate and 0.25% acetic acid (from 85% to 100% of

methanol in 4 min) was applied at a flow rate of 1 ml/min. MS

detection was set in positive mode. Corona discharge needle

voltage set at 4 kV. Capillary voltage was 4.0 kV, skim1 40 V, and

capillary exit at 118 V. Nitrogen was used as drying gas at a flow

rate of 10 liters/min, temperature of 350uC, nebulizer pressure of

50 PSI and vaporization temperature at 400uC. Helium was used

as collision gas. Cholesterol and total cholesteryl esters were

detected at m/z 369.3 ([cholesterol+H-H2O]+). Total TGs were

quantified by integrating the area of the total ion current (m/z

700–900) at a selected interval of retention time (from 4 to 5 min),

using TG 19:1/19:1/19:1 (m/z 944.8, Nu-Chek Prep) as an

internal standard.

Gene expression
Total RNA was extracted from 10–50 mg of frozen brain tissue

using TRIzol reagent (Invitrogen, Carlsbad, CA) and was purified

with the RNeasy mini kit (Qiagen, Valencia, CA). RNA quality

was assessed using an Agilent BioAnalyzer and by UV spectro-

photometry. First-strand complementary DNAs were synthesized

using SuperScript II RNaseH reverse transcriptase (Invitrogen).

Reverse transcription of total RNA (2 mg) was carried out using

oligo(dT)12–18 primers for 50 min at 42uC. mRNA levels were

measured by quantitative real-time polymerase chain reaction

(RT-PCR) with a Mx 3000P system (Stratagene, La Jolla, CA).

The following primers and fluorogenic probes were purchased

from Applied Biosystems (TaqMan Gene Expression Assays,

Foster City, CA): SCD-1, Hs01682761_m1; SCD-5 transcript variant

1 (SCD-5a, NCBI Refseq#NM_001037582), Hs01125695_m1;

SCD-5 transcript variant 2 (SCD-5b, NCBI Refseq#NM_024906),

Hs01125106_m1. RNA levels were normalized using glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) as standard.

Statistical analyses
Descriptive statistics are presented as means 6 SD. The

differences between unadjusted mean values were determined by

two-tailed Welch’s t-test. Associations between parameters were

tested by partial correlation analysis (Pearson’s). We used linear

regression to estimate the association between individual lipid

species and AD, adjusting for age, gender, and post mortem

interval. All confidence intervals correspond to a 95% confidence

level.
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