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BACKGROUND: Stearoyl-coenzyme A desaturase 1 (SCD1)
catalyzes the limiting step of monounsaturated fatty
acid synthesis in humans and is an important player in
triglyceride generation. SCD1 has been repeatedly im-
plicated in the pathogenesis of metabolic and inflam-
matory diseases. Therefore it is of great importance to
determine SCD1 activity in human samples. In this
study we aimed to evaluate a hepatic SCD1 activity in-
dex derived from plasma VLDL triglyceride composi-
tion as a tool to estimate hepatic SCD1 expression in
humans. Additionally, we further evaluated commonly
used fatty acid ratios [elongase, de novo lipogenesis,
and �5 and �6 desaturase] in plasma VLDL and he-
patic lipid fractions.

DESIGN AND METHODS: Liver biopsies and plasma sam-
ples were simultaneously collected from 15 individuals.
Plasma VLDL was obtained by ultracentrifugation. He-
patic and plasma VLDL lipids were fractionated by
thin-layer chromatography, and the fatty acid compo-
sition of each fraction was analyzed by gas chromatog-
raphy. Hepatic SCD1 expression was determined by
real-time PCR.

RESULTS: Hepatic SCD1 mRNA expression was associ-
ated with the product/precursor ratios (16:1/16:0 and
18:1/18:0) of hepatic lipid fractions. The 16:1/16:0 ratio
in hepatic and VLDL triglycerides as well as the 18:1/
18:0 ratio in plasma VLDL were closely associated with
hepatic SCD1 expression. The hepatic de novo lipogen-
esis index from triglycerides was associated with ex-
pression of lipogenic genes [fatty acid synthase
(FASN), acetyl-Coenzyme A carboxylase alpha
(ACACA), and sterol regulatory element binding tran-
scription factor 1 (SREBP-1)] and is closely reflected by
the de novo lipogenesis index in VLDL triglycerides.

CONCLUSION: We demonstrated for the first time that
hepatic SCD1 expression can be estimated noninva-
sively from routine blood samples by measuring the
SCD1 activity index in fasting plasma VLDL.
© 2009 American Association for Clinical Chemistry

Stearoyl-coenzyme A desaturase 1 (SCD1)4 is a micro-
somal enzyme that catalyzes �9 desaturation as the
limiting step of monounsaturated fatty acid synthesis
(1 ). The cellular activity of the short-lived enzyme
SCD1 is highly regulated and determined by the
amount of enzyme present in the cell. SCD1 mRNA
expression is influenced by hormonal (1 ), nutritional
(2 ), environmental, and genetic factors (3, 4 ) and rap-
idly adjusts enzyme levels to the demands of the organ-
ism. Rodent and cell culture studies have suggested an
important role of SCD1 in the pathogenesis of obesity
(1, 5 ), insulin resistance (1, 5, 6 ), diabetes mellitus (7 ),
and atherosclerosis (8 –11 ) as well as inflammatory dis-
eases (3, 12–16 ). Therefore, there has recently been
considerable interest in the determination of SCD1 ac-
tivity in human samples to elucidate the role of SCD1 for
health and disease in clinical studies and interventions
(3, 4, 13–16). Apart from elegant stable isotope tech-
niques to directly determine SCD1 desaturation activity
in vivo (13), the ratios of SCD1 product and precursor
fatty acids (18:1n9/18:0 and 16:1n7/16:0) in various acces-
sible tissues (adipose tissue, skeletal muscle) have been
used as a surrogate of enzyme activity in studies of small
human cohorts (3, 14, 17). In addition, desaturase activ-
ity indices have been investigated in various plasma lipid
fractions, although which tissues’ SCD1 activity is re-
flected by these plasma markers remains theoretical and a
point of controversy (18–20). It has been recommended
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that fatty acid ratios be determined from defined plasma
lipid fractions instead of whole plasma (18, 19). Because
of the specific fatty acid composition of the major fatty
acid–containing plasma lipid fractions [free fatty acid
(FFA), cholesterol esters (CE), phospholipids (PL), and
triacylglycerides (TG)], determination of the SCD1 de-
saturation index (16:1/16:0 or 18:1/18:0) from whole
plasma led to results that may not represent SCD1 activity
at all, but strongly correlate with plasma triglyceride levels
(15, 18, 19, 21). So far, only the fasting plasma FFA 16:
1n7/16:0 ratio has been shown to represent adipose tissue
fatty acid composition in humans (18).

The liver is a central organ in lipid homeostasis, and
hepatic lipid storage is associated with insulin resistance,
diabetes mellitus, and obesity (22). For ethical reasons
liver tissue samples available for clinical studies are scarce;
thus we aimed to establish a blood marker representing
hepatic SCD1 expression and activity. Because VLDL are
assembled in the liver and secreted into the circulation
(3, 16, 18) we hypothesized that VLDL-TG may reflect
hepatic fatty acid composition and SCD1 expression.

To address the above questions, we simulta-
neously obtained both liver and blood samples from 15
patients and determined the fatty acid pattern in
plasma VLDL-TG and 5 hepatic lipid fractions sepa-
rated by thin-layer chromatography (TLC). Next, we
compared the SCD1 activity indices (16:1/16:0 and 18:
1/18:0) between hepatic lipid fractions and plasma
VLDL-TGs as well as hepatic SCD1 mRNA expression.
We also evaluated the indices for �5 and �6 desaturase
activity, as well as elongase and de novo lipogenesis
(DNL) indices from the fatty acid patterns and mRNA
expression of the respective enzymes.

Patients, Materials, and Methods

PATIENTS

A total of 15 individuals [6 female, 9 male, mean (SE)
age 66 (9) years, body mass index 24 (4) kg/m2] sched-
uled for liver surgery were included in the present
study. Indications for the surgery were hepatic heman-
gioma (1 ), curative resection of hepatic metastases of
colorectal malignancies (11 ) or hepatocellular carci-
noma (2 ), and liver abscess (1 ). Study patients had
tested negative for viral hepatitis and had no liver cir-
rhosis. All study participants gave written informed
consent to participate in this research study, which was
approved by the Institutional Review Board of the Uni-
versity of Tübingen (protocol 168/2005) according to
the Helsinki Declaration. Liver biopsy samples were
taken from normal, nondiseased tissue during surgery,
immediately frozen in liquid nitrogen, and stored at
�80 °C. Fasting plasma samples were obtained on the
same day and immediately stored at �80 °C for analy-
sis of the fatty acid pattern.

FATTY ACID PATTERN

First, the plasma VLDL fraction was separated from the
HDL and LDL fractions. For this procedure, equal vol-
umes of NaCl solution (1.006 g/mL) and human plasma
were subjected to ultracentrifugation at 817 480g at 10 °C
for 18 h in a preparative ultracentrifuge (Optima; Beck-
man Coulter). Then the top layer (VLDL fraction) was
removed and used for further analyses. A TissueLyser
(Qiagen) was used to homogenize liver tissue for lipid
analysis in PBS containing 1% Triton X-100.

We used TLC to separate the VLDL fraction and
the liver homogenate into 5 subfractions containing
phospholipids, diacylglycerol, FFA, TG, and CE. In de-
tail, the samples were cleared from protein by use of
2-propanol, n-heptane and 2 mol/L phosphoric acid.
Toluol, methanol, and water were added, and after cen-
trifugation at 8175g the upper phase was dried under
nitrogen. The lipids were dissolved in CHCl3-CH3OH
and applied to a silica gel chromatography plate
(Merck). The phospholipids, diacylglycerol, FFA, TG,
and CE were separated by use of n-hexane and diethyl-
ether, with acetic acid as a solvent. To identify the lo-
calization of the fractions, pooled control plasma was
also separated on each plate and lipid fractions were
visualized by 2,7-dichlor-fluoresceine under ultravio-
let light. The fractions were scraped off the TLC plate,
transferred to screw-capped vials, and dissolved in a
methanol/toluol mixture (4:1, vol/vol) containing cis-
13,16,19-docosatrienoic acid as an internal standard.
Trans-esterification was performed by incubation with
acetyl chloride at 100 °C for 1 h. The cold sample was
neutralized with K2CO3 and the upper phase was con-
centrated to 80 �L under nitrogen. The fatty acid
methyl esters were quantified by using gas chromatog-
raphy with a flame ionization detector, as previously
described (9 ).

CALCULATION OF ACTIVITY INDICES

The 18:1n9/18:0 and 16:1n7/16:0 ratios were calculated
as indices of SCD1 (�9) desaturase activity. Further-
more, the 20:4n6/20:3n-6 and 20:3n6/18:2n6 ratios
were calculated as indexes of �5 and �6 desaturase ac-
tivities, respectively. The ratio of 18:0 to 16:0 was cal-
culated as an elongase index and the ratio of 16:0 to
18:2 as the DNL index (13, 23 ). Plasma triglycerides
and tissue triglyceride content from the homogenate
were quantified by use of the ADVIA 1650 clinical
chemistry analyzer (Siemens Healthcare Diagnostics).

DETERMINATION OF HEPATIC mRNA EXPRESSION BY

QUANTITATIVE PCR ANALYSIS

Frozen tissue was homogenized in a TissueLyser (Qia-
gen) and RNA was extracted with the RNeasy Tissue
Kit (Qiagen) according to the manufacturer’s instruc-
tions. Reverse transcription of total RNA and quanti-
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tative PCR of SCD1 and �-actin were performed on the
LightCycler system (Roche) with SYBR® green as de-
scribed previously (9 ), and �5 and �6 desaturase
mRNA expression was determined with a method sim-
ilar to that described by Xiang et al. (24 ).

Data are given as mean (SE). Linear regression
analysis was performed to compare activity indices be-
tween lipid fractions. The statistical software package
JMP 4.0 (SAS Institute) was used, and a P value �0.05
was considered statistically significant. P-values were
not adjusted for multiple testing.

Results

FATTY ACID COMPOSITION OF HEPATIC AND PLASMA VLDL

LIPID FRACTIONS

The fatty acid distributions in the hepatic and plasma
VLDL lipid fractions are shown in Table 1 in the Data
Supplement that accompanies the online version of
this article at http://www.clinchem.org/content/vol55/
issue12. In the liver samples from our study partici-
pants, fatty acids were mainly derived from TG
(52.4%), PL (34.6%), and FFA (6.5%), and only small
amounts originated from CE and diacylglycerides
(DG) (see online Supplemental Table 1, top lane). The
hepatic TG fraction contained significantly less stearate
(4-fold), eicosatrienoic acid C20:3n6 (26-fold), arachi-
donic acid C20:4n6 (17-fold), and docosahexaenoic
acid C22:6n3 (22-fold) and contained significantly
more oleate (4-fold) than PL (all P � 10�10). Calcu-
lated from these values, the indices for elongase, DNL,
and �9 desaturase activity showed strong differences
between the hepatic lipid fractions (online Supplemen-
tal Table 1).

HEPATIC SCD1 mRNA EXPRESSION AND SCD1 ACTIVITY INDICES

IN THE LIPID FRACTIONS OF LIVER, VLDL TRIGLYCERIDES AND

TOTAL VLDL

Comparing the SCD1 activity index 16:1/16:0 in the
hepatic lipid fractions with hepatic SCD1 mRNA ex-
pression levels, we found a strong association of SCD1
mRNA expression with activity indices of hepatic TG-,
FFA-, CE-, and PL-SCD1 but not DG-SCD1 (Table 1,
Fig. 1A). A much weaker association of the corre-
sponding SCD1 activity indices 18:1/18:0 with SCD1
mRNA expression was observed. Only hepatic PL- and
FFA-SCD1 but not TG-, DG-, and CE-SCD1 activity
indices were significantly correlated with SCD1 mRNA
expression (Table 2, Fig. 2A).

Because liver samples are not routinely available
for quantification of SCD1 expression, we investigated
the use of lipid fractions from simultaneously obtained
VLDL as a surrogate for hepatic SCD1 expression.
Therefore we compared hepatic SCD1 mRNA expres-
sion and SCD1 activity indices of hepatic lipid fractions

with the corresponding lipid fractions from plasma
VLDL-TG. The SCD1 activity indices 16:1/16:0 in the
VLDL-TG lipid fractions very closely reflected the ac-
tivity index in all corresponding hepatic lipid fractions
(Table 1, Fig. 1B), whereas the corresponding 18:1/18:0
activity indices showed a trend of association only with
hepatic TG but not with other hepatic lipid fractions
(Table 2, Fig. 2B). Accordingly we found a good corre-
lation of hepatic SCD1 mRNA expression with the 16:
1/16:0 activity index (Fig. 1C), but only a trend with the
18:1/18:0 activity index (Fig. 2C). Together these re-
sults indicate that the 16:1/16:0 activity indices ob-
tained from plasma VLDL-TG reflected the corre-
sponding lipid fractions in the liver and were also
correlated with hepatic SCD1 mRNA expression.

These results encouraged us to investigate a possi-
ble association of these hepatic parameters with total
VLDL SCD1 activity indices, because VLDL consists
mainly of triglycerides. We found that the 16:1/16:0
activity index is almost identical in total VLDL and
VLDL-TG (Fig. 1D) and that the VLDL 16:1/16:0 ac-
tivity index also reflects hepatic fatty acid composition
in all subfractions as well as SCD1 mRNA expression
(Table 1 and Fig. 1, E and F). The VLDL 18:1/18:0 ac-
tivity index closely reflects hepatic PL fatty acid com-
position as well as SCD1 mRNA expression and shows
a trend for correlation with hepatic FFA (Table 2 and
Fig. 2, E and F).

Table 1. 16:1/16:0 SCD1 activity index and SCD1
mRNA expression.a

SCD1/
�-actin
mRNA

VLDL-TG
16:1/16:0

VLDL
16:1/16:0

r P r P r P

SCD1/�-actin
mRNA

0.67 0.006 0.57 0.03

Liver-TG
16:1/16:0

0.54 0.04 0.91 �0.0001 0.94 �0.0001

Liver-DG
16:1/16:0

0.42 0.12 0.51 0.04 0.56 0.03

Liver-FFA
16:1/16:0

0.71 0.003 0.82 0.0001 0.84 �0.0001

Liver-CE
16:1/16:0

0.60 0.02 0.87 �0.0001 0.90 �0.0001

Liver-PL
16:1/16:0

0.70 0.005 0.88 �0.0001 0.89 �0.0001

VLDL 16:1/16:0 0.57 0.03 0.99 �0.0001

a Univariate relationships between hepatic fatty acid ratios, VLDL fatty acid
ratios, and hepatic gene expression. Results of linear regression analysis of
15 individuals are displayed. Significant differences are highlighted in bold,
trends in italic.

Hepatic SCD1 Activity Index
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FATTY ACID COMPOSITION OF THE HEPATIC AND VLDL LIPID

FRACTIONS AND ACTIVITY INDICES AND mRNA EXPRESSION OF

�5 AND �6 DESATURASES AND ELONGASE

Activity indices of �5 and �6 desaturases calculated
from tissue product/precursor ratios, as well as fatty
acid elongase activity (8, 25, 26 ) have been implicated

in insulin resistance. We tested whether hepatic activity
indices of these enzymes are also reflected by the VLDL
fatty acid composition in humans. We found no asso-
ciation between the indices of fatty acid elongase (18:0/
16:0, P � 0.2 and R � 0.3), �5 desaturase (20:4n6/20:
3n6, P � 0.7 and R � 0.1), and �6 desaturase (20:3n6/
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Fig. 1. Univariate relationships between the 16:1/16:0 ratio of hepatic and plasma VLDL fatty acid fractions and
hepatic SCD1 mRNA expression are displayed.

(A), The 16:1/16:0 ratio in liver triglycerides is positively associated with hepatic SCD1 mRNA expression, normalized for �-actin.
(B), The 16:1/16:0 ratio in liver triglycerides strongly correlates with the 16:1/16:0-ratio in VLDL triglycerides, which are
assembled and secreted from the liver. (C), Hepatic SCD1 mRNA expression, normalized for �-actin is positively correlated with
the 16:1/16:0-ratio in VLDL triglycerides. (D), 16:1/16:0 ratio in total VLDL triglycerides is very closely reflected in the 16:1/16:0
ratio of total VLDL fatty acids. (E), The 16:1/16:0 ratio in liver triglycerides strongly correlates with the 16:1/16:0 ratio in total
VLDL fatty acids. (F), Hepatic SCD1 mRNA expression, normalized for �-actin, is positively correlated with the 16:1/16:0 ratio
in total VLDL fatty acids.
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18:2n6, P � 0.3 and R � 0.38) in VLDL and hepatic
lipid fractions (data not shown). Furthermore, neither
hepatic nor VLDL �5 and �6 desaturase activity indi-
ces showed a significant correlation with �5 and �6
desaturase mRNA expression in liver tissue samples
(data not shown). Only the �6 desaturase activity index
in hepatic PL was associated with �6 desaturase mRNA
expression (P � 0.014, R � 0.61).

DNL INDEX IN HEPATIC AND VLDL LIPID FRACTIONS AND mRNA

EXPRESSION OF LIPOGENIC GENES

Increased lipogenesis has been implicated in the patho-
genesis of hepatic steatosis and insulin resistance (27 ).
The DNL index (16:0/18:2), which represents the main
product of DNL and an essential fatty acid that origi-
nates from dietary lipids, has been proposed as a tool to
assess fatty acid synthesis in humans (13, 23 ). The DNL
index was calculated from hepatic and VLDL-TG fatty
acid composition. The ratio of 16:0 to 18:2 in hepatic
TG is very closely mirrored by the corresponding ratio
in VLDL-TG and total VLDL (Table 3, online Supple-
mental Fig. 3A). The DNL index has been established
under strictly controlled conditions (13, 23 ) matching
the content of dietary 18:2 to the adipose tissue. To
investigate whether the DNL index provides informa-
tion on fatty acid synthesis in individuals on their ha-
bitual diet, we measured hepatic mRNA expression of
the lipogenic genes fatty acid synthase (FASN),5 acetyl-
Coenzyme A carboxylase alpha (ACACA), and sterol

regulatory element binding transcription factor 1
(SREBP-1). Even in individuals who were consuming a
habitual diet, the hepatic TG DNL index was signifi-
cantly correlated with FASN and ACC expression, and
showed a trend for SREBP-1 expression (Table 3, on-
line Supplemental Fig. 3, B–D). The VLDL-TG, but not
the VLDL DNL index, was positively correlated with
ACACA and SREBP-1 expression and showed a trend
for FASN (Table 3, online Supplemental Fig. 3, E–G).
These results indicate that the hepatic DNL may be
estimated from the VLDL-TG DNL index.

Discussion

The determination of hepatic SCD1 activity is impor-
tant for advancing our understanding of metabolic,
vascular, and inflammatory diseases. To establish a
marker of hepatic SCD1 activity, we examined human
liver biopsy samples and simultaneously drawn plasma
samples. We were able to demonstrate for the first time
that the ratio of 16:1 to 16:0 in fasting VLDL-TG closely
reflects the hepatic activity index in multiple lipid spe-
cies, as well as hepatic SCD1 mRNA expression in hu-
mans. The measurement of this ratio therefore pro-
vides a tool to noninvasively estimate hepatic SCD1
activity. Data supporting this finding were recently re-
ported by Chong et al. (13 ), who observed a parallel
activation of SCD activity estimated from fatty acid ra-
tios as well as conversion of an intravenously infused
stable isotope of C16:0 to C16:1 in VLDL-TG with
DNL. Because stearate is preferred to palmitate as a
substrate of SCD1 (28, 29 ), it is surprising that the de-
saturation activity index of palmitate (16:1/16:0) and
not stearate (18:1/18:0) reflects hepatic SCD1 expres-
sion more closely. A reason for this result could be the
presence of 2 separate triglyceride pools in the liver, as
suggested by Donelly et al. (30 ). The majority of he-
patic fatty acids derived from DNL or FFA uptake are
incorporated into triglycerides and exported as VLDL
within less than 1 h (31 ). However, these exogenous
and de novo synthesized fatty acids partially rotate
through the large cellular triglyceride storage pool,
which has a turnover time of several days to weeks
(23, 30 ). These cellular triglycerides may have been
generated days ago when the SCD1 activity was differ-
ent. Fatty acids from this storage pool may dilute SCD1
products at the time of measurement and therefore
may also influence the SCD1 activity index in secreted
VLDL-TGs. Because oleate is enriched in hepatic TG
(42.5% vs 39.1%, hepatic TG vs VLDL-TG, P � 0.0001,
online Supplemental Table 1) and 13 times more prev-
alent than palmitoleate, this dilution would mainly af-
fect the ratio of 18:1 to 18:0. Additionally, the 18:1/18:0
ratio may be more susceptible to influences by dietary

5 Human genes: FASN, fatty acid synthase; ACACA, acetyl-Coenzyme A carbox-
ylase alpha; SREBF1, sterol regulatory element binding transcription factor 1
SCD, stearoyl-CoA desaturase (delta-9-desaturase).

Table 2. 18:1/18:0 SCD1 activity index and SCD1
mRNA expression.a

SCD1/
�-actin mRNA

VLDL-TG
18:1/18:0

VLDL
18:1/18:0

r P r P r P

SCD1/�-actin mRNA 0.38 0.16 0.72 0.004

Liver-TG 18:1/18:0 0.10 0.72 0.41 0.12 0.28 0.32

Liver-DG 18:1/18:0 0.19 0.49 0.13 0.62 0.14 0.61

Liver-FFA 18:1/18:0 0.56 0.03 0.18 0.51 0.46 0.08

Liver-CE 18:1/18:0 0.24 0.38 0.25 0.36 0.27 0.99

Liver-PL 18:1/18:0 0.59 0.03 0.34 0.22 0.70 0.005

VLDL 18:1/18:0 0.72 0.004 0.63 0.01

a Univariate relationships between hepatic fatty acid ratios, VLDL fatty acid
ratios, and hepatic gene expression. Results of linear regression analysis of
15 individuals are displayed. Significant differences are highlighted in bold,
trends in italic.
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fat than the 16:1/16:0 ratio. Dietary lipids only contain
small amounts of palmitoleate, whereas oleate is the
most abundant dietary fatty acid and could primarily
influence the 18:1/18:0 ratio (18 ). Interestingly, in the
short-lived hepatic lipid fractions PL (32 ) and FFA, the

18:1/18:0 ratio is significantly associated with hepatic
SCD1 mRNA expression and the VLDL-TG 18:1/18:0
ratio (Table 2). It can be speculated that the 18:1/18:0
ratio in VLDL-TG more closely reflects long-term av-
erage hepatic SCD1 activity.
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Fig. 2. Univariate relationships between the 18:1/18:0 ratio of hepatic and plasma VLDL fatty acid fractions and
hepatic SCD1 mRNA expression are displayed.

(A), The 18:1/18:0 ratio in liver triglycerides is not correlated with hepatic SCD1 mRNA expression, normalized for �-actin. (B),
The 18:1/18:0 ratio in liver triglycerides shows a trend towards a positive correlation with the 18:1/18:0 ratio in VLDL
triglycerides, which are assembled and secreted from the liver. (C), Hepatic SCD1 mRNA expression, normalized for �-actin,
tends to a positive correlation with the 18:1/18:0 ratio in VLDL triglycerides. (D), 18:1/18:0 ratio in VLDL triglycerides is closely
associated with the 18:1/18:0 ratio of total VLDL fatty acids. (E), The 18:1/18:0 ratio in liver triglycerides strongly correlates with
the 18:1/18:0 ratio in total VLDL fatty acids. (F), Hepatic SCD1 mRNA expression, normalized for �-actin is positively correlated
with the 18:1/18:0 ratio in total VLDL fatty acids.
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The determination of fatty acid indices in
VLDL-TG requires a long sample preparation time that
involves ultracentrifugation, TLC separation, fatty acid
transesterification, and gas chromatography. This te-
dious and time-consuming procedure limits this anal-
ysis to small sample sizes. Because TG are the main
source of fatty acids in VLDL (18, 30 ), we compared
the VLDL-TG to the total VLDL fatty acid composi-
tion. The activity indices in total VLDL were almost
identical, and the total VLDL SCD1 activity index also
reflected hepatic fatty acid composition and mRNA ex-
pression. Therefore it may be feasible to use this pa-
rameter in larger studies.

Our data show, however, that unfractionated fatty
acids from tissue samples must be interpreted with
great caution and that the analysis of defined lipid frac-
tions is preferable. Each of the 5 analyzed TLC lipid
fractions from liver tissue showed clear signs of fatty
acid partitioning and had a characteristic fatty acid
composition. In agreement with earlier reports (33 )
the amount of fatty acids from the TG fraction in-
creased (r � 0.96, P � 0.0001) with increasing liver TG
content (0.6%–9%), whereas the fatty acids from the
PL fraction remained unchanged (r � �0.13, P �
0.28). Because the TG fraction contained significantly
less stearate and polyunsaturated fatty acids (C20:3N6,
C20:4N6, C22:6N3) and more oleate than the PL frac-
tion, the indices of elongase, DNL, and SCD1 activity
show strong differences between the hepatic lipid frac-
tions. Such differences may have a major influence if
total, unfractionated fatty acids are analyzed in tissue

samples with different TG content (34 ). An increase in
the triglyceride fraction would lead to a positive corre-
lation between TG content and the desaturase and
DNL indices as well as a negative correlation between
TG content and elongase index and polyunsaturated
fatty acid content solely due to the increasing propor-
tion of TG-derived fatty acids. Similar difficulties may
occur when fatty acid ratios from total plasma lipids are
analyzed (15, 18, 19 ). Therefore the analysis of defined
lipid fractions is important to avoid misinterpretation
of the fatty acid ratios as enzyme activity indices.

The determination of �5 and �6 desaturases and
elongase indices in VLDL-TG or total VLDL does not
provide any information on the activity indices of these
enzymes in hepatic lipids and should not be inter-
preted. The ratio of 16:0/18:2 in hepatic TG has been
suggested as a readout of DNL and was evaluated under
strictly controlled nutritional conditions (13, 23 ). In
the individuals included in this study we were able to
demonstrate that this DNL index in VLDL closely mir-
rored the hepatic TG fraction and is associated with
mRNA expression levels of key hepatic lipogenic en-
zymes FAS, ACC, and SREBP-1. The determination of
the plasma VLDL-TG DNL index may therefore also
provide useful information on hepatic fatty acid syn-
thesis in individuals on a habitual diet.

Although our study yielded a number of interest-
ing and highly significant observations, one clear limi-
tation of the study is the small sample size and therefore
limited power to detect weaker associations. Accord-
ingly, we were unable to detect a clear correlation be-
tween hepatic SCD1 expression and the VLDL-TG 18:1/
18:0 ratio that may be detectable only in a larger study.
However, simultaneously obtained hepatic tissue and
plasma samples are rarely available, and obtaining liver
biopsy samples from healthy individuals for research
purposes is ethically not acceptable. Additionally, we
did not specifically study a group of individuals who
suffered from obesity-related diseases and therefore we
cannot exclude the possibility that different results may
have been obtained with severely obese study
participants.

In conclusion, we demonstrated for the first time
that the SCD1 activity index in fasting plasma VLDL
may be used as a marker of hepatic SCD1 expression in
humans and can be determined noninvasively from
routine blood samples in clinical studies.
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Table 3. 16:0/18:2 DNL index and expression of
fatty acid synthesis genes FASN, ACACA,

and SREBP-1.a

Liver-TG DNL
index

VLDL-TG DNL
index

VLDL DNL
index

r P r P r P

VLDL-TG DNL 0.89 �0.0001 0.91 �0.0001

VLDL DNL 0.88 �0.0001 0.91 �0.0001

FASN/�-actin
mRNA

0.51 0.05 0.44 0.10 0.33 0.24

ACACA/
�-actin
mRNA

0.59 0.02 0.62 0.01 0.49 0.08

SREBP-1/
�-actin
mRNA

0.49 0.07 0.61 0.02 0.47 0.09

a Univariate relationships between hepatic fatty acid-ratios, VLDL fatty
acid-ratios and hepatic gene expression. Results of linear regression
analysis of 15 individuals are displayed. Significant differences are high-
lighted in bold, trends in italic.
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