
different extent (average deviations: �3%, �18%, and
�33%).

In conclusion, the presented study showed that our mea-
surement procedure, based on ED and trueness-based
ID-LC/tandem MS measurement of dialysate, qualifies as
a method for standardization of FT4 measurements. At the
same time, our results demonstrate that samples pro-
cessed according to the C37-A protocol are suitable for
use in standardization. These results provide a basis for
worldwide standardization of FT4 measurements under
the auspices of the International Federation of Clinical
Chemistry and Laboratory Medicine (23 ). An inaugural
meeting of the group is foreseen at the 2006 AACC
Annual Meeting (24 ).
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18. Van Uytfanghe K, Stöckl D, Thienpont LM. Development of a simplified
sample pretreatment procedure as part of an isotope dilution-liquid chroma-
tography-tandem mass spectrometry candidate reference measurement
procedure for serum total thyroxine. Rapid Commun Mass Spectrom 2004;
18:1539–40.

19. Thienpont LM, Van Uytfanghe K, Marriott J, Stokes P, Siekmann L, Kessler
A, et al. Metrologic traceability of total thyroxine measurements in human
serum: efforts to establish a network of reference measurement laborato-
ries. Clin Chem 2005;51:161–8.

20. Clinical Laboratory and Standards Institute (CLSI). Preparation and Valida-
tion of Commutable Frozen Human Serum Pools as Secondary Reference
Materials for Cholesterol Measurement Procedures; Approved Guideline.
CLSI document C37-A [ISBN 1-56238-392-2]. CLSI, Wayne, PA, 2004.

21. Clinical Laboratory and Standards Institute (CLSI). Evaluation of Precision
Performance of Quantitative Measurement Methods; Approved Guideline.
CLSI document EP5–A2 (ISBN 1-56238-542-9). CLSI, Wayne, PA, 2004.

22. Holm SS, Andreasen L, Hansen SH, Faber J, Staun-Olsen P. Influence of
adsorption and deproteination on potential free thyroxine reference meth-
ods. Clin Chem 2002;48:108–14.

23. IFCC. 8.3. SD Working Groups. 8.3.33 Standardization of thyroid function
tests. http://www.IFCC.org/divisions/CPD/handbook/Handbook (ac-
cessed April 2006).

24. American Association of Clinical Chemistry. 2006 Annual Meeting http://
www.aacc.org/2006AM/full_brochure.pdf. p. 22 (accessed April 2006).

DOI: 10.1373/clinchem.2006.070425

Cell-Free Plasma DNA as a Novel Marker of Aseptic
Inflammation Severity Related to Exercise Overtraining,
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sofia.gr or jpapasotiriou@ath.forthnet.gr)

Background: Circulating free plasma DNA is impli-
cated in conditions associated with tissue injury, includ-
ing exercise-induced inflammation, and thus is a poten-
tial marker for athletic overtraining.
Methods: We measured free plasma DNA along with
C-reactive protein (CRP), creatine kinase (CK), and uric
acid (UA) in 17 recreationally trained men participating
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in a 12-week resistance training regimen (8 resistance
multi-joint exercises selected to stress the entire muscu-
lature: bench press, squat, leg press, snatch, hang clean,
dead lifts, barbell arm curls, and rowing), consisting of
4 training periods (t1, t2, t3, and t4).
Results: Plasma DNA concentrations increased mark-
edly after t1, t2, and t3 and returned to baseline after t4.
There were substantial differences between t2 and t1
and between t3 and t2 plasma DNA concentrations. CRP
increased by 300% after t2 and by 400% after t3 (there
was no difference between t2 and t3 CRP values) com-
pared with baseline (t0). CK increased only after t3. UA
increased after t2 and t3, with a greater increase after t3.
Conclusions: This study demonstrates that, after
chronic excessive resistance exercise, plasma DNA con-
centrations increase in proportion to training load, sug-
gesting that plasma DNA may be a sensitive marker for
overtraining-induced inflammation.
© 2006 American Association for Clinical Chemistry

Strenuous exercise may lead to transient muscle fiber
damage, with indications such as soreness, edema, per-
formance deterioration, and protein release into plasma
(1–6). Muscle injury has been attributed to local ATP
depletion, calcium homeostasis disturbance, and oxida-
tive stress induced by generation of free radicals (7, 8).
These adverse effects are seen in athletes affected by
overtraining, which has been defined as an accumulation
of exercise training and nontraining stress, leading to
long-term decrement in athletic performance (despite
continued training) with or without related physiologic
and psychological signs. Overtraining can lead to an acute
breakdown with subsequent repair of skeletal muscle and
is associated with increased susceptibility to infections
attributable to changes in the functional status of immune
cells (9 ).

Circulating plasma DNA is altered both quantitatively
and qualitatively under a variety of conditions, including
tissue injury, pregnancy, cancer, and trauma (10–13).
Plasma DNA concentration has been correlated with
injury severity and thus is a potential marker for risk
stratification (11 ). We investigated the use of the plasma
DNA response as an inflammation marker during a
chronic resistance exercise (RE) protocol of progressively
increased training volume. We then compared this
marker with conventional indices such as C-reactive pro-
tein (CRP), creatine kinase activity (CK), and uric acid
(UA), which are associated with exercise-induced muscle
damage and acute-phase response.

Participants were recruited from a volunteer database,
by word of mouth and by fliers posted within the Uni-
versity and the local community. A written informed
consent was signed by all participants. Procedures were
in accordance with the Helsinki Declaration for the Ethical
Treatment of Human Subjects. Ethics approval was given
by the institutional review board.

Our study participants were healthy volunteers: age,
21.56 (2.6) years; body weight, 77 (7.1) kg; body height,

1.77 (0.11) m; and body fat, 12.2 (2.1)%. They were 17
recreationally trained men who participated in a 12-week
resistance training regimen (8 resistance multi-joint exer-
cises were selected to stress the entire musculature: bench
press, squat, leg press, snatch, hang clean, dead lifts,
barbell arm curls, and rowing) consisting of four 3-week
training periods (t1, t2, t3, and t4). The first and fourth
training periods (t1 and t4) included low-volume training:
2 training days per week, 2 sets per exercise, 10–12 reps
per set at 70% of their maximal strength (1 repetition
maximum, 1RM); t2 included high-volume training, 4
training days per week, 4 sets per exercise, 6–10 reps per
set at 75%–85% of 1RM; and t3 included very–high-
volume training, 6 training days per week, 6 sets per
exercise, and 1–6 reps per set at 85%–100% of 1RM.
Consecutive training periods were separated by a 5-day
rest period. The mean training volume (tonnage) lifted per
training period is presented in Table 1.

Blood samples were drawn at baseline (participants
abstained from resistance training for at least 8 weeks
before the study) and at 96 h after the last training session
of each period.

We isolated plasma DNA from 400 �L plasma after 10
min centrifugation at 800g, followed by 10 min centrifu-
gation at 16 000g. DNA was extracted with the QIAamp
DNA Blood MiniKit (Qiagen) and eluted into 50 �L of
RNase/DNase-free H2O. We measured free-DNA by
quantitative real-time PCR with the LightCycler (Roche
Diagnostics) with the following primers: forward, 5�-AGG
TGA ACG TGG ATG AAG TT-3� and reverse, 5�-AGG
GTA GAC CAC CAG CAG CC-3�, for the amplification of
a 189-bp fragment of the �-globin gene. PCR amplification
reactions were performed with the LightCycler Fast Start
DNA Master SYBR Green I (Roche Diagnostics). The PCR
conditions included a first denaturation step of 95 °C (10
min), followed by 40 cycles of 95 °C (10 s), 95 °C (5 s), and
95 °C (20 s) with a temperature ramp of 95 °C/s (14 ). All
samples were analyzed in duplicate. Each reaction in-
cluded a calibration curve of 6.6 ng to 6.6 pg genomic
DNA made from 4 serial dilutions of purchased human
genomic DNA (0.2 g/L in 10 mmol/L Tris-HCl, 1
mmol/L EDTA, pH 8.0), (Roche Diagnostics GmbH, Cat.
No. 11691112001) plus 2 known dilutions (50 and 500 pg
DNA) used as controls in all experiments. DNA values
were expressed as genome equivalents per milliliter
(GenEq/mL), corresponding to 6.6 pg DNA.

We measured CK, UA, and CRP with the COBAS
INTEGRA 800 Clinical Chemistry System (Roche Diag-
nostics).

We analyzed data with SPSS-PC and calculated means
(SE). We evaluated time differences with ANOVA re-
peated measures and used a Bonfferoni test for post hoc
comparisons. Data normality was tested with the 1-sam-
ple Kolmogorov-Smirnoff test; therefore a nonparametric
test was not necessary. Statistical significance was set at P
�0.05.

Plasma DNA increased significantly after t1, t2, and t3,
and returned to baseline concentrations after t4 (Table 1,
Fig. 1). Plasma DNA concentrations differed significantly
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for t2 vs t1 and for t3 vs t2. CRP increased compared with
baseline by 300% after t2, and by 400% after t3 (there was
no difference between t2 and t3 values). CK increased
only after t3 (Table 1). UA (Table 1) increased after t2 and
t3, with a greater increase after t3. Performance increased
after t2 and declined thereafter (Table 1).

An overtraining response to the exercise protocol was
demonstrated by a decreased performance level, despite
increased training and subsequent lack of recovery within
3 weeks, and despite decreased training volume in t4 (9 ).
Tissue damage and inflammation were confirmed by
increased plasma DNA and CRP concentrations. After
each training period, Pearson correlation coefficients were
calculated between plasma DNA, CRP, CK, UA, and
training load. The results showed substantial correlations
between plasma DNA and CK at t2 (r � 0.793, P � 0.01)
and at t3 (r � 0.744, P �0.01). We observed no statistically
significant correlations between plasma DNA, CRP, CK,
and UA. Plasma DNA concentrations were significantly
related to training load (average tons lifted in all exercises
per week in each training period) only in t2 (r � 0.755, P
�0.01) and t3 (r � 0.786, P �0.01).

Circulating DNA has been shown to increase 9- to
17.5-fold after long-distance running (21–246 km) (7, 14),
but changes in concentration in response to chronic over-
load training have not been investigated. We measured
plasma DNA 96 h after the last training session to look for
changes reflecting chronic exercise-induced inflamma-
tion. Indeed, plasma DNA remained increased for 96 h
postexercise after the t1, t2, and t3 periods. Increased
plasma DNA concentrations have persisted up to 3 h after
major injury in trauma patients (15 ), 2 or more days (as in
this study) after exhaustive exercise (14 ), and several days
in patients with multiple organ dysfunction syndrome
(10 ).

Increased plasma DNA concentrations correlated with
injury severity in trauma and stroke patients (11, 16)

indicate that circulating DNA concentration is a potential
risk stratification marker. We observed a significant cor-
relation of plasma DNA with CK (in t2 and t3) but not
with CRP. Demonstration of a similar response of plasma
DNA to progressive training that does not lead to over-
training would indicate that plasma DNA can be used as
an overtraining marker.

Muscular overtraining impairs athletic performance,
increases susceptibility to infections, and induces muscle
tissue injury as well as psychological, immunological, and
biochemical dysfunctions (9 ). Although there is a strong
demand for early diagnosis of overtraining, specific sen-
sitive markers have not been identified. CRP is a sensitive
marker for inflammation regardless of etiology (17 ) and
increases in response to intense exercise (14, 18, 19). Our
results provide evidence of a delayed (4 days) CRP
response to RE, which was also seen (3–6 days) after
intense running (20, 21). In our study, basal CRP concen-
trations were within the reference interval (0–10 mg/L),
but after t3, mean CRP (4.8 mg/L) approached the refer-
ence interval for acute infections (5 mg/L for adults) (22 ).
Unlike plasma DNA, however, CRP concentrations did
not reflect the difference in magnitude of exercise over-
load between t3 and t4. Similarly, CK increased only after
t3. The response of plasma DNA, but not of CRP or CK,
seemed to be proportional to the exercise training
overload.

The mechanisms underlying the presence of circulating
DNA are generally unknown. Apoptosis, necrosis, active
release, and impaired clearance have been implicated
(23–25), but information regarding their role during ex-
ercise is scarce. RE has been reported to generate reactive
oxygen species (ROS) and oxidative stress (26 ). ROS have
been associated with postexercise inflammation and mus-
cle damage propagation (27 ). An inflammatory response
during the repair of overtraining-induced muscle damage
(28 ) promotes neutrophil and macrophage infiltration of

Table 1. Training volume and performance as well as CK, CRP, and UA concentration changes at rest (Baseline), and after
low- (t1), high- (t2), very high- (t3), and low-volume (t4) resistance training

Baseline t1 t2 t3 t4

Mean training volume, tonnage/wk (SE)a N/A 2.2 (0.2) 7.8 (0.6)d 14.8 (1.4)d,c 1.7 (0.3)f

Performance (maximal strength), kg (SE)b 96.6 (17.1) 99.2 (11.7) 109.6 (14.8)c,d 104.5 (14.9)c 107.2 (12.5)c,d

Cell-free plasma DNA, 8GenEq/mL (SE) 31.4 (13.8) 143.5 (22.9)c 289.9 (41.1)c,d,e 605.7 (116.4)c–f 74.8 (29.6)c,d,f

(14.0–65.9) (76.6–180.6) (196.9–383.0) (251.8–959.5) (27.7–141.8)
CK activity, units/L (SE) 102.6 (19.1) 134.5 (20.1) 296.6 (49.6) 368.1 (44.0)c,d 161.7 (23.8)f

(59.4–149.8) (86.7–82.2) (185.5–407.6) (264.4–513.9) (105.7–217.7)
CRP, mg/L (SE) 0.84 (0.17) 0.86 (0.19) 3.364 (1.07)c,d 4.8 (1.04)c,d 1.42 (0.30)f

(0.45–1.24) (0.42–1.31) (1.00–5.77) (1.89–6.64) (0.73–2.11)
UA, mg/L (SE) 39.1 (4.0) 42.4 (4.0) 51.2 (3.7)c 66.6 (5.8)c,d 43.8 (4.3)f

(30–48.2) (33.3–51.5) (42.8–59.6) (53.4–79.5) (34.1–53.5)
a Mean number of tons lifted per week for all resistance exercises employed in the protocol. NA, not applicable.
b Mean maximal strength in 1 representative exercise (squat).
c Significant difference with baseline (T0).
d Significant difference with t1.
e Difference between t3 and t4.
f Significant difference between t4 and t3.
g Significant difference with t4. Minimum and maximum values are shown in parentheses.
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muscles (2 ), most likely initiated by ROS (29 ). Thus,
peroxidative muscle damage is exacerbated during post-
exercise inflammation. Neutrophils and macrophages
generate superoxide (30 ), which may be converted to
hydrogen peroxide, which then reacts with superoxide in
the presence of a transition metal to form hydroxyl radical
(31 ). After exercise, neutrophil counts in muscle are
increased for 5 days, and peak macrophage counts occur
at 2 to 7 days (1–2). UA, which we used as an oxidative
stress marker because of its free-radical scavenging prop-
erties, increased after t2 and t3, indicating that chronic RE
induced oxidative stress. ROS generation leads to DNA
damage in the form of DNA cross-links, oxidized nucleo-
sides, and strand breaks (32 ). More work is needed to
elucidate the origin of plasma DNA during exercise.

This study demonstrates that plasma DNA concentra-
tions increase in proportion to training load after chronic
excessive RE, suggesting that plasma DNA may be a
sensitive marker for monitoring and quantification of
overtraining in athletes. In particular, our finding that
plasma DNA was substantially correlated with mean
training load during periods of high-volume and very–
high-volume training (t2 and t3) supports this theory.
Plasma DNA measurement is noninvasive and requires
limited time and personnel. Further investigation of the
origin of plasma DNA in the overtrained state is
warranted.

This work is funded in part by an Athens University
research grant (ELKE no. 70/4/4255).
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