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A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of
the human genome was generated by the whole-genome shotgun sequencing
method. The 14.8-billion bp DNA sequence was generated over 9 months from
27,271,853 high-quality sequence reads (5.11-fold coverage of the genome)
from both ends of plasmid clones made from the DNA of five individuals. Two
assembly strategies—a whole-genome assembly and a regional chromosome
assembly—were used, each combining sequence data from Celera and the
publicly funded genome effort. The public data were shredded into 550-bp
segments to create a 2.9-fold coverage of those genome regions that had been
sequenced, without including biases inherent in the cloning and assembly
procedure used by the publicly funded group. This brought the effective cov-
erage in the assemblies to eightfold, reducing the number and size of gaps in
the final assembly over what would be obtained with 5.11-fold coverage. The
two assembly strategies yielded very similar results that largely agree with
independent mapping data. The assemblies effectively cover the euchromatic
regions of the human chromosomes. More than 90% of the genome is in
scaffold assemblies of 100,000 bp or more, and 25% of the genome is in
scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed
26,588 protein-encoding transcripts for which there was strong corroborating
evidence and an additional ;12,000 computationally derived genes with mouse
matches or other weak supporting evidence. Although gene-dense clusters are
obvious, almost half the genes are dispersed in low G1C sequence separated
by large tracts of apparently noncoding sequence. Only 1.1% of the genome
is spanned by exons, whereas 24% is in introns, with 75% of the genome being
intergenic DNA. Duplications of segmental blocks, ranging in size up to chro-
mosomal lengths, are abundant throughout the genome and reveal a complex
evolutionary history. Comparative genomic analysis indicates vertebrate ex-
pansions of genes associated with neuronal function, with tissue-specific de-
velopmental regulation, and with the hemostasis and immune systems. DNA
sequence comparisons between the consensus sequence and publicly funded
genome data provided locations of 2.1 million single-nucleotide polymorphisms
(SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per
1250 on average, but there was marked heterogeneity in the level of poly-
morphism across the genome. Less than 1% of all SNPs resulted in variation in
proteins, but the task of determining which SNPs have functional consequences
remains an open challenge.

Decoding of the DNA that constitutes the
human genome has been widely anticipated
for the contribution it will make toward un-

derstanding human evolution, the causation
of disease, and the interplay between the
environment and heredity in defining the hu-
man condition. A project with the goal of
determining the complete nucleotide se-
quence of the human genome was first for-
mally proposed in 1985 (1). In subsequent
years, the idea met with mixed reactions in
the scientific community (2). However, in
1990, the Human Genome Project (HGP) was
officially initiated in the United States under
the direction of the National Institutes of
Health and the U.S. Department of Energy
with a 15-year, $3 billion plan for completing
the genome sequence. In 1998 we announced
our intention to build a unique genome-
sequencing facility, to determine the se-
quence of the human genome over a 3-year
period. Here we report the penultimate mile-
stone along the path toward that goal, a nearly
complete sequence of the euchromatic por-
tion of the human genome. The sequencing
was performed by a whole-genome random
shotgun method with subsequent assembly of
the sequenced segments.

The modern history of DNA sequencing
began in 1977, when Sanger reported his meth-
od for determining the order of nucleotides of

DNA using chain-terminating nucleotide ana-
logs (3). In the same year, the first human gene
was isolated and sequenced (4). In 1986, Hood
and co-workers (5) described an improvement
in the Sanger sequencing method that included
attaching fluorescent dyes to the nucleotides,
which permitted them to be sequentially read
by a computer. The first automated DNA se-
quencer, developed by Applied Biosystems in
California in 1987, was shown to be successful
when the sequences of two genes were obtained
with this new technology (6). From early se-
quencing of human genomic regions (7), it
became clear that cDNA sequences (which are
reverse-transcribed from RNA) would be es-
sential to annotate and validate gene predictions
in the human genome. These studies were the
basis in part for the development of the ex-
pressed sequence tag (EST) method of gene
identification (8), which is a random selection,
very high throughput sequencing approach to
characterize cDNA libraries. The EST method
led to the rapid discovery and mapping of hu-
man genes (9). The increasing numbers of hu-
man EST sequences necessitated the develop-
ment of new computer algorithms to analyze
large amounts of sequence data, and in 1993 at
The Institute for Genomic Research (TIGR), an
algorithm was developed that permitted assem-
bly and analysis of hundreds of thousands of
ESTs. This algorithm permitted characteriza-
tion and annotation of human genes on the basis
of 30,000 EST assemblies (10).

The complete 49-kbp bacteriophage lamb-
da genome sequence was determined by a
shotgun restriction digest method in 1982
(11). When considering methods for sequenc-
ing the smallpox virus genome in 1991 (12),
a whole-genome shotgun sequencing method
was discussed and subsequently rejected ow-
ing to the lack of appropriate software tools
for genome assembly. However, in 1994,
when a microbial genome-sequencing project
was contemplated at TIGR, a whole-genome
shotgun sequencing approach was considered
possible with the TIGR EST assembly algo-
rithm. In 1995, the 1.8-Mbp Haemophilus
influenzae genome was completed by a
whole-genome shotgun sequencing method
(13). The experience with several subsequent
genome-sequencing efforts established the
broad applicability of this approach (14, 15).

A key feature of the sequencing approach
used for these megabase-size and larger ge-
nomes was the use of paired-end sequences
(also called mate pairs), derived from sub-
clone libraries with distinct insert sizes and
cloning characteristics. Paired-end sequences
are sequences 500 to 600 bp in length from
both ends of double-stranded DNA clones of
prescribed lengths. The success of using end
sequences from long segments (18 to 20 kbp)
of DNA cloned into bacteriophage lambda in
assembly of the microbial genomes led to the
suggestion (16 ) of an approach to simulta-
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neously map and sequence the human ge-
nome by means of end sequences from 150-
kbp bacterial artificial chromosomes (BACs)
(17, 18). The end sequences spanned by
known distances provide long-range continu-
ity across the genome. A modification of the
BAC end-sequencing (BES) method was ap-
plied successfully to complete chromosome 2
from the Arabidopsis thaliana genome (19).

In 1997, Weber and Myers (20) proposed
whole-genome shotgun sequencing of the
human genome. Their proposal was not well
received (21). However, by early 1998, as
less than 5% of the genome had been se-
quenced, it was clear that the rate of progress
in human genome sequencing worldwide
was very slow (22), and the prospects for
finishing the genome by the 2005 goal were
uncertain.

In early 1998, PE Biosystems (now Applied
Biosystems) developed an automated, high-
throughput capillary DNA sequencer, subse-
quently called the ABI PRISM 3700 DNA
Analyzer. Discussions between PE Biosystems
and TIGR scientists resulted in a plan to under-
take the sequencing of the human genome with
the 3700 DNA Analyzer and the whole-genome
shotgun sequencing techniques developed at
TIGR (23). Many of the principles of operation
of a genome-sequencing facility were estab-
lished in the TIGR facility (24). However, the
facility envisioned for Celera would have a
capacity roughly 50 times that of TIGR, and
thus new developments were required for sam-
ple preparation and tracking and for whole-
genome assembly. Some argued that the re-
quired 150-fold scale-up from the H. influenzae
genome to the human genome with its complex
repeat sequences was not feasible (25). The
Drosophila melanogaster genome was thus
chosen as a test case for whole-genome assem-
bly on a large and complex eukaryotic genome.
In collaboration with Gerald Rubin and the
Berkeley Drosophila Genome Project, the nu-
cleotide sequence of the 120-Mbp euchromatic
portion of the Drosophila genome was deter-
mined over a 1-year period (26–28). The Dro-
sophila genome-sequencing effort resulted in
two key findings: (i) that the assembly algo-
rithms could generate chromosome assemblies
with highly accurate order and orientation with
substantially less than 10-fold coverage, and (ii)
that undertaking multiple interim assemblies in
place of one comprehensive final assembly was
not of value.

These findings, together with the dramatic
changes in the public genome effort subsequent
to the formation of Celera (29), led to a modi-
fied whole-genome shotgun sequencing ap-
proach to the human genome. We initially pro-
posed to do 10-fold sequence coverage of the
genome over a 3-year period and to make in-
terim assembled sequence data available quar-
terly. The modifications included a plan to per-
form random shotgun sequencing to ;5-fold

coverage and to use the unordered and unori-
ented BAC sequence fragments and subassem-
blies published in GenBank by the publicly
funded genome effort (30) to accelerate the
project. We also abandoned the quarterly an-
nouncements in the absence of interim assem-
blies to report.

Although this strategy provided a reason-
able result very early that was consistent with a
whole-genome shotgun assembly with eight-
fold coverage, the human genome sequence is
not as finished as the Drosophila genome was
with an effective 13-fold coverage. However, it
became clear that even with this reduced cov-
erage strategy, Celera could generate an accu-
rately ordered and oriented scaffold sequence of
the human genome in less than 1 year. Human
genome sequencing was initiated 8 September
1999 and completed 17 June 2000. The first
assembly was completed 25 June 2000, and the
assembly reported here was completed 1 Octo-
ber 2000. Here we describe the whole-genome
random shotgun sequencing effort applied to
the human genome. We developed two differ-
ent assembly approaches for assembling the ;3
billion bp that make up the 23 pairs of chromo-
somes of the Homo sapiens genome. Any Gen-
Bank-derived data were shredded to remove
potential bias to the final sequence from chi-
meric clones, foreign DNA contamination, or
misassembled contigs. Insofar as a correctly
and accurately assembled genome sequence
with faithful order and orientation of contigs
is essential for an accurate analysis of the
human genetic code, we have devoted a con-
siderable portion of this manuscript to the
documentation of the quality of our recon-
struction of the genome. We also describe our
preliminary analysis of the human genetic
code on the basis of computational methods.
Figure 1 (see fold-out chart associated with
this issue; files for each chromosome can be
found in Web fig. 1 on Science Online at
www.sciencemag.org/cgi/content/full/291/
5507/1304/DC1) provides a graphical over-
view of the genome and the features encoded
in it. The detailed manual curation and inter-
pretation of the genome are just beginning.

To aid the reader in locating specific an-
alytical sections, we have divided the paper
into seven broad sections. A summary of the
major results appears at the beginning of each
section.

1 Sources of DNA and Sequencing Methods
2 Genome Assembly Strategy and

Characterization
3 Gene Prediction and Annotation
4 Genome Structure
5 Genome Evolution
6 A Genome-Wide Examination of

Sequence Variations
7 An Overview of the Predicted Protein-

Coding Genes in the Human Genome
8 Conclusions

1 Sources of DNA and Sequencing
Methods

Summary. This section discusses the rationale
and ethical rules governing donor selection to
ensure ethnic and gender diversity along with
the methodologies for DNA extraction and li-
brary construction. The plasmid library con-
struction is the first critical step in shotgun
sequencing. If the DNA libraries are not uni-
form in size, nonchimeric, and do not randomly
represent the genome, then the subsequent steps
cannot accurately reconstruct the genome se-
quence. We used automated high-throughput
DNA sequencing and the computational infra-
structure to enable efficient tracking of enor-
mous amounts of sequence information (27.3
million sequence reads; 14.9 billion bp of se-
quence). Sequencing and tracking from both
ends of plasmid clones from 2-, 10-, and 50-kbp
libraries were essential to the computational
reconstruction of the genome. Our evidence
indicates that the accurate pairing rate of end
sequences was greater than 98%.

Various policies of the United States and the
World Medical Association, specifically the
Declaration of Helsinki, offer recommenda-
tions for conducting experiments with human
subjects. We convened an Institutional Re-
view Board (IRB) (31) that helped us estab-
lish the protocol for obtaining and using hu-
man DNA and the informed consent process
used to enroll research volunteers for the
DNA-sequencing studies reported here. We
adopted several steps and procedures to pro-
tect the privacy rights and confidentiality of
the research subjects (donors). These includ-
ed a two-stage consent process, a secure ran-
dom alphanumeric coding system for speci-
mens and records, circumscribed contact with
the subjects by researchers, and options for
off-site contact of donors. In addition, Celera
applied for and received a Certificate of Con-
fidentiality from the Department of Health
and Human Services. This Certificate autho-
rized Celera to protect the privacy of the
individuals who volunteered to be donors as
provided in Section 301(d) of the Public
Health Service Act 42 U.S.C. 241(d).

Celera and the IRB believed that the ini-
tial version of a completed human genome
should be a composite derived from multiple
donors of diverse ethnic backgrounds Pro-
spective donors were asked, on a voluntary
basis, to self-designate an ethnogeographic
category (e.g., African-American, Chinese,
Hispanic, Caucasian, etc.). We enrolled 21
donors (32).

Three basic items of information from
each donor were recorded and linked by con-
fidential code to the donated sample: age,
sex, and self-designated ethnogeographic
group. From females, ;130 ml of whole,
heparinized blood was collected. From males,
;130 ml of whole, heparinized blood was
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collected, as well as five specimens of semen,
collected over a 6-week period. Permanent
lymphoblastoid cell lines were created by
Epstein-Barr virus immortalization. DNA
from five subjects was selected for genomic
DNA sequencing: two males and three fe-
males—one African-American, one Asian-
Chinese, one Hispanic-Mexican, and two
Caucasians (see Web fig. 2 on Science Online
at www.sciencemag.org/cgi/content/291/5507/
1304/DC1). The decision of whose DNA to
sequence was based on a complex mix of fac-
tors, including the goal of achieving diversity as
well as technical issues such as the quality of
the DNA libraries and availability of immortal-
ized cell lines.

1.1 Library construction and
sequencing
Central to the whole-genome shotgun sequenc-
ing process is preparation of high-quality plas-
mid libraries in a variety of insert sizes so that
pairs of sequence reads (mates) are obtained,
one read from both ends of each plasmid insert.
High-quality libraries have an equal representa-
tion of all parts of the genome, a small number
of clones without inserts, and no contamination
from such sources as the mitochondrial genome
and Escherichia coli genomic DNA. DNA from
each donor was used to construct plasmid librar-
ies in one or more of three size classes: 2 kbp, 10
kbp, and 50 kbp (Table 1) (33).

In designing the DNA-sequencing pro-
cess, we focused on developing a simple
system that could be implemented in a robust
and reproducible manner and monitored ef-
fectively (Fig. 2) (34 ).

Current sequencing protocols are based on

the dideoxy sequencing method (35), which
typically yields only 500 to 750 bp of sequence
per reaction. This limitation on read length has
made monumental gains in throughput a pre-
requisite for the analysis of large eukaryotic
genomes. We accomplished this at the Celera
facility, which occupies about 30,000 square
feet of laboratory space and produces sequence
data continuously at a rate of 175,000 total
reads per day. The DNA-sequencing facility is
supported by a high-performance computation-
al facility (36).

The process for DNA sequencing was mod-
ular by design and automated. Intermodule
sample backlogs allowed four principal
modules to operate independently: (i) li-
brary transformation, plating, and colony
picking; (ii) DNA template preparation;
(iii) dideoxy sequencing reaction set-up
and purification; and (iv) sequence deter-
mination with the ABI PRISM 3700 DNA
Analyzer. Because the inputs and outputs
of each module have been carefully
matched and sample backlogs are continu-
ously managed, sequencing has proceeded
without a single day’s interruption since the
initiation of the Drosophila project in May
1999. The ABI 3700 is a fully automated
capillary array sequencer and as such can
be operated with a minimal amount of
hands-on time, currently estimated at about
15 min per day. The capillary system also
facilitates correct associations of sequenc-
ing traces with samples through the elimi-
nation of manual sample loading and lane-
tracking errors associated with slab gels.
About 65 production staff were hired and
trained, and were rotated on a regular basis

through the four production modules. A
central laboratory information management
system (LIMS) tracked all sample plates by
unique bar code identifiers. The facility was
supported by a quality control team that per-
formed raw material and in-process testing
and a quality assurance group with responsi-
bilities including document control, valida-
tion, and auditing of the facility. Critical to
the success of the scale-up was the validation
of all software and instrumentation before
implementation, and production-scale testing
of any process changes.

1.2 Trace processing
An automated trace-processing pipeline has
been developed to process each sequence file
(37 ). After quality and vector trimming, the
average trimmed sequence length was 543
bp, and the sequencing accuracy was expo-
nentially distributed with a mean of 99.5%
and with less than 1 in 1000 reads being less
than 98% accurate (26 ). Each trimmed se-
quence was screened for matches to contam-
inants including sequences of vector alone, E.
coli genomic DNA, and human mitochondri-
al DNA. The entire read for any sequence
with a significant match to a contaminant was
discarded. A total of 713 reads matched E.
coli genomic DNA and 2114 reads matched
the human mitochondrial genome.

1.3 Quality assessment and control
The importance of the base-pair level ac-
curacy of the sequence data increases as the
size and repetitive nature of the genome to
be sequenced increases. Each sequence
read must be placed uniquely in the ge-

Table 1. Celera-generated data input into assembly.

Individual
Number of reads for different insert libraries

Total number of
base pairs

2 kbp 10 kbp 50 kbp Total

No. of sequencing reads A 0 0 2,767,357 2,767,357 1,502,674,851
B 11,736,757 7,467,755 66,930 19,271,442 10,464,393,006
C 853,819 881,290 0 1,735,109 942,164,187
D 952,523 1,046,815 0 1,999,338 1,085,640,534
F 0 1,498,607 0 1,498,607 813,743,601

Total 13,543,099 10,894,467 2,834,287 27,271,853 14,808,616,179

Fold sequence coverage A 0 0 0.52 0.52
(2.9-Gb genome) B 2.20 1.40 0.01 3.61

C 0.16 1.17 0 0.32
D 0.18 0.20 0 0.37
F 0 0.28 0 0.28

Total 2.54 2.04 0.53 5.11

Fold clone coverage A 0 0 18.39 18.39
B 2.96 11.26 0.44 14.67
C 0.22 1.33 0 1.54
D 0.24 1.58 0 1.82
F 0 2.26 0 2.26

Total 3.42 16.43 18.84 38.68

Insert size* (mean) Average 1,951 bp 10,800 bp 50,715 bp
Insert size* (SD) Average 6.10% 8.10% 14.90%
% Mates† Average 74.50 80.80 75.60

*Insert size and SD are calculated from assembly of mates on contigs. †% Mates is based on laboratory tracking of sequencing runs.
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nome, and even a modest error rate can
reduce the effectiveness of assembly. In
addition, maintaining the validity of mate-
pair information is absolutely critical for
the algorithms described below. Procedural
controls were established for maintaining
the validity of sequence mate-pairs as se-
quencing reactions proceeded through the
process, including strict rules built into the
LIMS. The accuracy of sequence data pro-
duced by the Celera process was validated
in the course of the Drosophila genome
project (26 ). By collecting data for the

entire human genome in a single facility,
we were able to ensure uniform quality
standards and the cost advantages associat-
ed with automation, an economy of scale,
and process consistency.

2 Genome Assembly Strategy and
Characterization
Summary. We describe in this section the two
approaches that we used to assemble the ge-
nome. One method involves the computational
combination of all sequence reads with shred-
ded data from GenBank to generate an indepen-

dent, nonbiased view of the genome. The sec-
ond approach involves clustering all of the frag-
ments to a region or chromosome on the basis
of mapping information. The clustered data
were then shredded and subjected to computa-
tional assembly. Both approaches provided es-
sentially the same reconstruction of assembled
DNA sequence with proper order and orienta-
tion. The second method provided slightly
greater sequence coverage (fewer gaps) and
was the principal sequence used for the analysis
phase. In addition, we document the complete-
ness and correctness of this assembly process

Fig. 2. Flow diagram for sequencing pipeline. Samples are received,
selected, and processed in compliance with standard operating proce-
dures, with a focus on quality within and across departments. Each
process has defined inputs and outputs with the capability to exchange

samples and data with both internal and external entities according to
defined quality guidelines. Manufacturing pipeline processes, products,
quality control measures, and responsible parties are indicated and are
described further in the text.
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and provide a comparison to the public genome
sequence, which was reconstructed largely by
an independent BAC-by-BAC approach. Our
assemblies effectively covered the euchromatic
regions of the human chromosomes. More than
90% of the genome was in scaffold assemblies
of 100,000 bp or greater, and 25% of the ge-
nome was in scaffolds of 10 million bp or
larger.

Shotgun sequence assembly is a classic
example of an inverse problem: given a set
of reads randomly sampled from a target
sequence, reconstruct the order and the po-
sition of those reads in the target. Genome
assembly algorithms developed for Dro-
sophila have now been extended to assemble
the ;25-fold larger human genome. Celera as-
semblies consist of a set of contigs that are
ordered and oriented into scaffolds that are then
mapped to chromosomal locations by using
known markers. The contigs consist of a col-
lection of overlapping sequence reads that pro-
vide a consensus reconstruction for a contigu-
ous interval of the genome. Mate pairs are a
central component of the assembly strategy.
They are used to produce scaffolds in which the
size of gaps between consecutive contigs is
known with reasonable precision. This is ac-
complished by observing that a pair of reads,
one of which is in one contig, and the other of
which is in another, implies an orientation and
distance between the two contigs (Fig. 3). Fi-
nally, our assemblies did not incorporate all
reads into the final set of reported scaffolds.
This set of unincorporated reads is termed
“chaff,” and typically consisted of reads from
within highly repetitive regions, data from other
organisms introduced through various routes as
found in many genome projects, and data of
poor quality or with untrimmed vector.

2.1 Assembly data sets
We used two independent sets of data for our
assemblies. The first was a random shotgun
data set of 27.27 million reads of average length
543 bp produced at Celera. This consisted
largely of mate-pair reads from 16 libraries
constructed from DNA samples taken from five
different donors. Libraries with insert sizes of 2,
10, and 50 kbp were used. By looking at how
mate pairs from a library were positioned in
known sequenced stretches of the genome, we
were able to characterize the range of insert
sizes in each library and determine a mean and
standard deviation. Table 1 details the number
of reads, sequencing coverage, and clone cov-
erage achieved by the data set. The clone cov-
erage is the coverage of the genome in cloned
DNA, considering the entire insert of each
clone that has sequence from both ends. The
clone coverage provides a measure of the
amount of physical DNA coverage of the ge-
nome. Assuming a genome size of 2.9 Gbp, the
Celera trimmed sequences gave a 5.13 cover-
age of the genome, and clone coverage was
3.423, 16.403, and 18.843 for the 2-, 10-, and
50-kbp libraries, respectively, for a total of
38.73 clone coverage.

The second data set was from the publicly
funded Human Genome Project (PFP) and is
primarily derived from BAC clones (30). The
BAC data input to the assemblies came from a
download of GenBank on 1 September 2000
(Table 2) totaling 4443.3 Mbp of sequence.
The data for each BAC is deposited at one of
four levels of completion. Phase 0 data are a set
of generally unassembled sequencing reads
from a very light shotgun of the BAC, typically
less than 13. Phase 1 data are unordered as-
semblies of contigs, which we call BAC contigs
or bactigs. Phase 2 data are ordered assemblies
of bactigs. Phase 3 data are complete BAC

sequences. In the past 2 years the PFP has
focused on a product of lower quality and com-
pleteness, but on a faster time-course, by con-
centrating on the production of Phase 1 data
from a 33 to 43 light-shotgun of each BAC
clone.

We screened the bactig sequences for con-
taminants by using the BLAST algorithm
against three data sets: (i) vector sequences
in Univec core (38), filtered for a 25-bp
match at 98% sequence identity at the ends
of the sequence and a 30-bp match internal
to the sequence; (ii) the nonhuman portion
of the High Throughput Genomic (HTG)
Seqences division of GenBank (39), fil-
tered at 200 bp at 98%; and (iii) the non-
redundant nucleotide sequences from Gen-
Bank without primate and human virus en-
tries, filtered at 200 bp at 98%. Whenever
25 bp or more of vector was found within
50 bp of the end of a contig, the tip up to
the matching vector was excised. Under
these criteria we removed 2.6 Mbp of pos-
sible contaminant and vector from the
Phase 3 data, 61.0 Mbp from the Phase 1
and 2 data, and 16.1 Mbp from the Phase 0
data (Table 2). This left us with a total of
4363.7 Mbp of PFP sequence data 20%
finished, 75% rough-draft (Phase 1 and 2),
and 5% single sequencing reads (Phase 0).
An additional 104,018 BAC end-sequence
mate pairs were also downloaded and in-
cluded in the data sets for both assembly
processes (18).

2.2 Assembly strategies
Two different approaches to assembly were
pursued. The first was a whole-genome as-
sembly process that used Celera data and the
PFP data in the form of additional synthetic
shotgun data, and the second was a compart-
mentalized assembly process that first parti-
tioned the Celera and PFP data into sets
localized to large chromosomal segments and
then performed ab initio shotgun assembly on
each set. Figure 4 gives a schematic of the
overall process flow.

For the whole-genome assembly, the PFP
data was first disassembled or “shredded” into a
synthetic shotgun data set of 550-bp reads that
form a perfect 23 covering of the bactigs. This
resulted in 16.05 million “faux” reads that were
sufficient to cover the genome 2.963 because
of redundancy in the BAC data set, without
incorporating the biases inherent in the PFP
assembly process. The combined data set of
43.32 million reads (83), and all associated
mate-pair information, were then subjected to
our whole-genome assembly algorithm to pro-
duce a reconstruction of the genome. Neither
the location of a BAC in the genome nor its
assembly of bactigs was used in this process.
Bactigs were shredded into reads because we
found strong evidence that 2.13% of them were
misassembled (40). Furthermore, BAC location

Fig. 3. Anatomy of whole-genome assembly. Overlapping shredded bactig fragments (red lines) and
internally derived reads from five different individuals (black lines) are combined to produce a
contig and a consensus sequence (green line). Contigs are connected into scaffolds (red) by using
mate pair information. Scaffolds are then mapped to the genome (gray line) with STS (blue star)
physical map information.
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information was ignored because some BACs
were not correctly placed on the PFP physical
map and because we found strong evidence that

at least 2.2% of the BACs contained sequence
data that were not part of the given BAC (41),
possibly as a result of sample-tracking errors

(see below). In short, we performed a true, ab
initio whole-genome assembly in which we
took the expedient of deriving additional se-
quence coverage, but not mate pairs, assembled
bactigs, or genome locality, from some exter-
nally generated data.

In the compartmentalized shotgun assembly
(CSA), Celera and PFP data were partitioned
into the largest possible chromosomal segments
or “components” that could be determined with
confidence, and then shotgun assembly was ap-
plied to each partitioned subset wherein the
bactig data were again shredded into faux reads
to ensure an independent ab initio assembly of
the component. By subsetting the data in this
way, the overall computational effort was re-
duced and the effect of interchromosomal dupli-
cations was ameliorated. This also resulted in a
reconstruction of the genome that was relatively
independent of the whole-genome assembly re-
sults so that the two assemblies could be com-
pared for consistency. The quality of the parti-
tioning into components was crucial so that
different genome regions were not mixed to-
gether. We constructed components from (i) the
longest scaffolds of the sequence from each
BAC and (ii) assembled scaffolds of data unique
to Celera’s data set. The BAC assemblies were
obtained by a combining assembler that used the
bactigs and the 53 Celera data mapped to those
bactigs as input. This effort was undertaken as
an interim step solely because the more accurate
and complete the scaffold for a given sequence
stretch, the more accurately one can tile these
scaffolds into contiguous components on the
basis of sequence overlap and mate-pair infor-
mation. We further visually inspected and cu-
rated the scaffold tiling of the components to
further increase its accuracy. For the final CSA
assembly, all but the partitioning was ignored,
and an independent, ab initio reconstruction of
the sequence in each component was obtained
by applying our whole-genome assembly algo-
rithm to the partitioned, relevant Celera data and
the shredded, faux reads of the partitioned, rel-
evant bactig data.

2.3 Whole-genome assembly
The algorithms used for whole-genome as-
sembly (WGA) of the human genome were
enhancements to those used to produce the
sequence of the Drosophila genome reported
in detail in (28).

The WGA assembler consists of a pipeline
composed of five principal stages: Screener,
Overlapper, Unitigger, Scaffolder, and Repeat
Resolver, respectively. The Screener finds
and marks all microsatellite repeats with less
than a 6-bp element, and screens out all
known interspersed repeat elements, includ-
ing Alu, Line, and ribosomal DNA. Marked
regions get searched for overlaps, whereas
screened regions do not get searched, but can
be part of an overlap that involves unscreened
matching segments.

Table 2. GenBank data input into assembly.

Center Statistics
Completion phase sequence

0 1 and 2 3

Whitehead Institute/ Number of accession records 2,825 6,533 363
MIT Center for Number of contigs 243,786 138,023 363
Genome Research, Total base pairs 194,490,158 1,083,848,245 48,829,358
USA Total vector masked (bp) 1,553,597 875,618 2,202

Total contaminant masked
(bp)

13,654,482 4,417,055 98,028

Average contig length (bp) 798 7,853 134,516

Washington University, Number of accession records 19 3,232 1,300
USA Number of contigs 2,127 61,812 1,300

Total base pairs 1,195,732 561,171,788 164,214,395
Total vector masked (bp) 21,604 270,942 8,287
Total contaminant masked

(bp)
22,469 1,476,141 469,487

Average contig length (bp) 562 9,079 126,319

Baylor College of Number of accession records 0 1,626 363
Medicine, USA Number of contigs 0 44,861 363

Total base pairs 0 265,547,066 49,017,104
Total vector masked (bp) 0 218,769 4,960
Total contaminant masked

(bp)
0 1,784,700 485,137

Average contig length (bp) 0 5,919 135,033

Production Sequencing Number of accession records 135 2,043 754
Facility, DOE Joint Number of contigs 7,052 34,938 754
Genome Institute, Total base pairs 8,680,214 294,249,631 60,975,328
USA Total vector masked (bp) 22,644 162,651 7,274

Total contaminant masked
(bp)

665,818 4,642,372 118,387

Average contig length (bp) 1,231 8,422 80,867

The Institute of Physical Number of accession records 0 1,149 300
and Chemical Number of contigs 0 25,772 300
Research (RIKEN), Total base pairs 0 182,812,275 20,093,926
Japan Total vector masked (bp) 0 203,792 2,371

Total contaminant masked (bp) 0 308,426 27,781
Average contig length (bp) 0 7,093 66,978

Sanger Centre, UK Number of accession records 0 4,538 2,599
Number of contigs 0 74,324 2,599
Total base pairs 0 689,059,692 246,118,000
Total vector masked (bp) 0 427,326 25,054
Total contaminant masked (bp) 0 2,066,305 374,561
Average contig length (bp) 0 9,271 94,697

Others* Number of accession records 42 1,894 3,458
Number of contigs 5,978 29,898 3,458
Total base pairs 5,564,879 283,358,877 246,474,157
Total vector masked (bp) 57,448 279,477 32,136
Total contaminant masked

(bp)
575,366 1,616,665 1,791,849

Average contig length (bp) 931 9,478 71,277

All centers combined† Number of accession records 3,021 21,015 9,137
Number of contigs 258,943 409,628 9,137
Total base pairs 209,930,983 3,360,047,574 835,722,268
Total vector masked (bp) 1,655,293 2,438,575 82,284
Total contaminant masked

(bp)
14,918,135 16,311,664 3,365,230

Average contig length (bp) 811 8,203 91,466

*Other centers contributing at least 0.1% of the sequence include: Chinese National Human Genome Center;
Genomanalyse Gesellschaft fuer Biotechnologische Forschung mbH; Genome Therapeutics Corporation; GENOSCOPE;
Chinese Academy of Sciences; Institute of Molecular Biotechnology; Keio University School of Medicine; Lawrence
Livermore National Laboratory; Cold Spring Harbor Laboratory; Los Alamos National Laboratory; Max-Planck Institut fuer
Molekulare, Genetik; Japan Science and Technology Corporation; Stanford University; The Institute for Genomic
Research; The Institute of Physical and Chemical Research, Gene Bank; The University of Oklahoma; University of Texas
Southwestern Medical Center, University of Washington. †The 4,405,700,825 bases contributed by all centers were
shredded into faux reads resulting in 2.963 coverage of the genome.
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The Overlapper compares every read
against every other read in search of complete
end-to-end overlaps of at least 40 bp and with
no more than 6% differences in the match.
Because all data are scrupulously vector-
trimmed, the Overlapper can insist on com-
plete overlap matches. Computing the set of
all overlaps took roughly 10,000 CPU hours
with a suite of four-processor Alpha SMPs
with 4 gigabytes of RAM. This took 4 to 5
days in elapsed time with 40 such machines
operating in parallel.

Every overlap computed above is statisti-
cally a 1-in-1017 event and thus not a coinci-
dental event. What makes assembly combi-
natorially difficult is that while many over-
laps are actually sampled from overlapping
regions of the genome, and thus imply that
the sequence reads should be assembled to-
gether, even more overlaps are actually from
two distinct copies of a low-copy repeated
element not screened above, thus constituting
an error if put together. We call the former
“true overlaps” and the latter “repeat-induced
overlaps.” The assembler must avoid choos-
ing repeat-induced overlaps, especially early
in the process.

We achieve this objective in the Unitig-
ger. We first find all assemblies of reads that
appear to be uncontested with respect to all
other reads. We call the contigs formed from
these subassemblies unitigs (for uniquely as-
sembled contigs). Formally, these unitigs are
the uncontested interval subgraphs of the
graph of all overlaps (42). Unfortunately, al-
though empirically many of these assemblies
are correct (and thus involve only true over-
laps), some are in fact collections of reads
from several copies of a repetitive element
that have been overcollapsed into a single
subassembly. However, the overcollapsed
unitigs are easily identified because their av-
erage coverage depth is too high to be con-
sistent with the overall level of sequence
coverage. We developed a simple statistical
discriminator that gives the logarithm of the
odds ratio that a unitig is composed of unique
DNA or of a repeat consisting of two or more
copies. The discriminator, set to a sufficiently
stringent threshold, identifies a subset of the
unitigs that we are certain are correct. In
addition, a second, less stringent threshold
identifies a subset of remaining unitigs very
likely to be correctly assembled, of which we
select those that will consistently scaffold
(see below), and thus are again almost certain
to be correct. We call the union of these two
sets U-unitigs. Empirically, we found from a
63 simulated shotgun of human chromosome
22 that we get U-unitigs covering 98% of the
stretches of unique DNA that are .2 kbp
long. We are further able to identify the
boundary of the start of a repetitive element
at the ends of a U-unitig and leverage this so
that U-unitigs span more than 93% of all

singly interspersed Alu elements and other
100-to 400-bp repetitive segments.

The result of running the Unitigger was
thus a set of correctly assembled subcontigs
covering an estimated 73.6% of the human
genome. The Scaffolder then proceeded to
use mate-pair information to link these to-
gether into scaffolds. When there are two or
more mate pairs that imply that a given pair
of U-unitigs are at a certain distance and
orientation with respect to each other, the
probability of this being wrong is again
roughly 1 in 1010, assuming that mate pairs
are false less than 2% of the time. Thus, one
can with high confidence link together all
U-unitigs that are linked by at least two 2- or
10-kbp mate pairs producing intermediate-
sized scaffolds that are then recursively
linked together by confirming 50-kbp mate
pairs and BAC end sequences. This process
yielded scaffolds that are on the order of
megabase pairs in size with gaps between
their contigs that generally correspond to re-
petitive elements and occasionally to small
sequencing gaps. These scaffolds reconstruct
the majority of the unique sequence within a
genome.

For the Drosophila assembly, we engaged
in a three-stage repeat resolution strategy
where each stage was progressively more

aggressive and thus more likely to make a
mistake. For the human assembly, we contin-
ued to use the first “Rocks” substage where
all unitigs with a good, but not definitive,
discriminator score are placed in a scaffold
gap. This was done with the condition that
two or more mate pairs with one of their
reads already in the scaffold unambiguously
place the unitig in the given gap. We estimate
the probability of inserting a unitig into an
incorrect gap with this strategy to be less than
1027 based on a probabilistic analysis.

We revised the ensuing “Stones” substage
of the human assembly, making it more like
the mechanism suggested in our earlier work
(43). For each gap, every read R that is placed
in the gap by virtue of its mated pair M being
in a contig of the scaffold and implying R’s
placement is collected. Celera’s mate-pairing
information is correct more than 99% of the
time. Thus, almost every, but not all, of the
reads in the set belong in the gap, and when
a read does not belong it rarely agrees with
the remainder of the reads. Therefore, we
simply assemble this set of reads within the
gap, eliminating any reads that conflict with
the assembly. This operation proved much
more reliable than the one it replaced for the
Drosophila assembly; in the assembly of a
simulated shotgun data set of human chromo-

Fig. 4. Architecture of Celera’s two-pronged assembly strategy. Each oval denotes a computation
process performing the function indicated by its label, with the labels on arcs between ovals
describing the nature of the objects produced and/or consumed by a process. This figure
summarizes the discussion in the text that defines the terms and phrases used.

T H E H U M A N G E N O M E

www.sciencemag.org SCIENCE VOL 291 16 FEBRUARY 2001 1311

 o
n 

F
eb

ru
ar

y 
18

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


some 22, all stones were placed correctly.
The final method of resolving gaps is to

fill them with assembled BAC data that cover
the gap. We call this external gap “walking.”
We did not include the very aggressive “Peb-
bles” substage described in our Drosophila
work, which made enough mistakes so as to
produce repeat reconstructions for long inter-
spersed elements whose quality was only
99.62% correct. We decided that for the hu-
man genome it was philosophically better not
to introduce a step that was certain to produce
less than 99.99% accuracy. The cost was a
somewhat larger number of gaps of some-
what larger size.

At the final stage of the assembly process,
and also at several intermediate points, a
consensus sequence of every contig is pro-
duced. Our algorithm is driven by the princi-
ple of maximum parsimony, with quality-
value–weighted measures for evaluating each
base. The net effect is a Bayesian estimate of
the correct base to report at each position.
Consensus generation uses Celera data when-
ever it is present. In the event that no Celera
data cover a given region, the BAC data
sequence is used.

A key element of achieving a WGA of the
human genome was to parallelize the Overlap-
per and the central consensus sequence–con-
structing subroutines. In addition, memory was
a real issue—a straightforward application of
the software we had built for Drosophila would

have required a computer with a 600-gigabyte
RAM. By making the Overlapper and Unitigger
incremental, we were able to achieve the same
computation with a maximum of instantaneous
usage of 28 gigabytes of RAM. Moreover, the
incremental nature of the first three stages al-
lowed us to continually update the state of this
part of the computation as data were delivered
and then perform a 7-day run to complete Scaf-
folding and Repeat Resolution whenever de-
sired. For our assembly operations, the total
compute infrastructure consists of 10 four-pro-
cessor SMPs with 4 gigabytes of memory per
cluster (Compaq’s ES40, Regatta) and a 16-
processor NUMA machine with 64 gigabytes
of memory (Compaq’s GS160, Wildfire). The
total compute for a run of the assembler was
roughly 20,000 CPU hours.

The assembly of Celera’s data, together
with the shredded bactig data, produced a set of
scaffolds totaling 2.848 Gbp in span and con-
sisting of 2.586 Gbp of sequence. The chaff, or
set of reads not incorporated in the assembly,
numbered 11.27 million (26%), which is con-
sistent with our experience for Drosophila.
More than 84% of the genome was covered by
scaffolds .100 kbp long, and these averaged
91% sequence and 9% gaps with a total of
2.297 Gbp of sequence. There were a total of
93,857 gaps among the 1637 scaffolds .100
kbp. The average scaffold size was 1.5 Mbp,
the average contig size was 24.06 kbp, and the
average gap size was 2.43 kbp, where the dis-

tribution of each was essentially exponential.
More than 50% of all gaps were less than 500
bp long, .62% of all gaps were less than 1 kbp
long, and no gap was .100 kbp long. Similar-
ly, more than 65% of the sequence is in contigs
.30 kbp, more than 31% is in contigs .100
kbp, and the largest contig was 1.22 Mbp long.
Table 3 gives detailed summary statistics for
the structure of this assembly with a direct
comparison to the compartmentalized shotgun
assembly.

2.4 Compartmentalized shotgun
assembly
In addition to the WGA approach, we pur-
sued a localized assembly approach that was
intended to subdivide the genome into seg-
ments, each of which could be shotgun as-
sembled individually. We expected that this
would help in resolution of large interchro-
mosomal duplications and improve the statis-
tics for calculating U-unitigs. The compart-
mentalized assembly process involved clus-
tering Celera reads and bactigs into large,
multiple megabase regions of the genome,
and then running the WGA assembler on the
Celera data and shredded, faux reads ob-
tained from the bactig data.

The first phase of the CSA strategy was to
separate Celera reads into those that matched
the BAC contigs for a particular PFP BAC
entry, and those that did not match any public
data. Such matches must be guaranteed to

Table 3. Scaffold statistics for whole-genome and compartmentalized shotgun assemblies.

Scaffold size

All .30 kbp .100 kbp .500 kbp .1000 kbp

Compartmentalized shotgun assembly

No. of bp in scaffolds 2,905,568,203 2,748,892,430 2,700,489,906 2,489,357,260 2,248,689,128
(including intrascaffold gaps)

No. of bp in contigs 2,653,979,733 2,524,251,302 2,491,538,372 2,320,648,201 2,106,521,902
No. of scaffolds 53,591 2,845 1,935 1,060 721
No. of contigs 170,033 112,207 107,199 93,138 82,009
No. of gaps 116,442 109,362 105,264 92,078 81,288
No. of gaps #1 kbp 72,091 69,175 67,289 59,915 53,354
Average scaffold size (bp) 54,217 966,219 1,395,602 2,348,450 3,118,848
Average contig size (bp) 15,609 22,496 23,242 24,916 25,686
Average intrascaffold gap size

(bp)
2,161 2,054 1,985 1,832 1,749

Largest contig (bp) 1,988,321 1,988,321 1,988,321 1,988,321 1,988,321
% of total contigs 100 95 94 87 79

Whole-genome assembly

No. of bp in scaffolds
(including intrascaffold gaps)

2,847,890,390 2,574,792,618 2,525,334,447 2,328,535,466 2,140,943,032

No. of bp in contigs 2,586,634,108 2,334,343,339 2,297,678,935 2,143,002,184 1,983,305,432
No. of scaffolds 118,968 2,507 1,637 818 554
No. of contigs 221,036 99,189 95,494 84,641 76,285
No. of gaps 102,068 96,682 93,857 83,823 75,731
No. of gaps #1 kbp 62,356 60,343 59,156 54,079 49,592
Average scaffold size (bp) 23,938 1,027,041 1,542,660 2,846,620 3,864,518
Average contig size (bp) 11,702 23,534 24,061 25,319 25,999
Average intrascaffold gap size

(bp)
2,560 2,487 2,426 2,213 2,082

Largest contig (bp) 1,224,073 1,224,073 1,224,073 1,224,073 1,224,073
% of total contigs 100 90 89 83 77
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properly place a Celera read, so all reads were
first masked against a library of common
repetitive elements, and only matches of at
least 40 bp to unmasked portions of the read
constituted a hit. Of Celera’s 27.27 million
reads, 20.76 million matched a bactig and
another 0.62 million reads, which did not
have any matches, were nonetheless identi-
fied as belonging in the region of the bactig’s
BAC because their mate matched the bactig.
Of the remaining reads, 2.92 million were
completely screened out and so could not be
matched, but the other 2.97 million reads had
unmasked sequence totaling 1.189 Gbp that
were not found in the GenBank data set.
Because the Celera data are 5.113 redundant,
we estimate that 240 Mbp of unique Celera
sequence is not in the GenBank data set.

In the next step of the CSA process, a
combining assembler took the relevant 53
Celera reads and bactigs for a BAC entry, and
produced an assembly of the combined data
for that locale. These high-quality sequence
reconstructions were a transient result whose
utility was simply to provide more reliable
information for the purposes of their tiling
into sets of overlapping and adjacent scaffold
sequences in the next step. In outline, the
combining assembler first examines the set of
matching Celera reads to determine if there
are excessive pileups indicative of un-
screened repetitive elements. Wherever these
occur, reads in the repeat region whose mates
have not been mapped to consistent positions
are removed. Then all sets of mate pairs that
consistently imply the same relative position
of two bactigs are bundled into a link and
weighted according to the number of mates in
the bundle. A “greedy” strategy then attempts
to order the bactigs by selecting bundles of
mate-pairs in order of their weight. A selected
mate-pair bundle can tie together two forma-
tive scaffolds. It is incorporated to form a
single scaffold only if it is consistent with the
majority of links between contigs of the scaf-
fold. Once scaffolding is complete, gaps are
filled by the “Stones” strategy described
above for the WGA assembler.

The GenBank data for the Phase 1 and 2
BACs consisted of an average of 19.8 bactigs
per BAC of average size 8099 bp. Applica-
tion of the combining assembler resulted in
individual Celera BAC assemblies being put
together into an average of 1.83 scaffolds
(median of 1 scaffold) consisting of an aver-
age of 8.57 contigs of average size 18,973 bp.
In addition to defining order and orientation
of the sequence fragments, there were 57%
fewer gaps in the combined result. For Phase
0 data, the average GenBank entry consisted
of 91.52 reads of average length 784 bp.
Application of the combining assembler re-
sulted in an average of 54.8 scaffolds consist-
ing of an average of 58.1 contigs of average
size 873 bp. Basically, some small amount of

assembly took place, but not enough Celera
data were matched to truly assemble the 0.53
to 13 data set represented by the typical
Phase 0 BACs. The combining assembler
was also applied to the Phase 3 BACs for
SNP identification, confirmation of assem-
bly, and localization of the Celera reads. The
phase 0 data suggest that a combined whole-
genome shotgun data set and 13 light-shot-
gun of BACs will not yield good assembly of
BAC regions; at least 33 light-shotgun of
each BAC is needed.

The 5.89 million Celera fragments not
matching the GenBank data were assembled
with our whole-genome assembler. The as-
sembly resulted in a set of scaffolds totaling
442 Mbp in span and consisting of 326 Mbp
of sequence. More than 20% of the scaffolds
were .5 kbp long, and these averaged 63%
sequence and 27% gaps with a total of 302
Mbp of sequence. All scaffolds .5 kbp were
forwarded along with all scaffolds produced
by the combining assembler to the subse-
quent tiling phase.

At this stage, we typically had one or two
scaffolds for every BAC region constituting
at least 95% of the relevant sequence, and a
collection of disjoint Celera-unique scaffolds.
The next step in developing the genome com-
ponents was to determine the order and over-
lap tiling of these BAC and Celera-unique
scaffolds across the genome. For this, we
used Celera’s 50-kbp mate-pairs information,
and BAC-end pairs (18) and sequence tagged
site (STS) markers (44 ) to provide long-
range guidance and chromosome separation.
Given the relatively manageable number of
scaffolds, we chose not to produce this tiling
in a fully automated manner, but to compute
an initial tiling with a good heuristic and then
use human curators to resolve discrepancies
or missed join opportunities. To this end, we
developed a graphical user interface that dis-
played the graph of tiling overlaps and the
evidence for each. A human curator could
then explore the implication of mapped STS
data, dot-plots of sequence overlap, and a
visual display of the mate-pair evidence sup-
porting a given choice. The result of this
process was a collection of “components,”
where each component was a tiled set of
BAC and Celera-unique scaffolds that had
been curator-approved. The process resulted
in 3845 components with an estimated span
of 2.922 Gbp.

In order to generate the final CSA, we
assembled each component with the WGA
algorithm. As was done in the WGA process,
the bactig data were shredded into a synthetic
23 shotgun data set in order to give the
assembler the freedom to independently as-
semble the data. By using faux reads rather
than bactigs, the assembly algorithm could
correct errors in the assembly of bactigs and
remove chimeric content in a PFP data entry.

Chimeric or contaminating sequence (from
another part of the genome) would not be
incorporated into the reassembly of the com-
ponent because it did not belong there. In
effect, the previous steps in the CSA process
served only to bring together Celera frag-
ments and PFP data relevant to a large con-
tiguous segment of the genome, wherein we
applied the assembler used for WGA to pro-
duce an ab initio assembly of the region.

WGA assembly of the components result-
ed in a set of scaffolds totaling 2.906 Gbp in
span and consisting of 2.654 Gbp of se-
quence. The chaff, or set of reads not incor-
porated into the assembly, numbered 6.17
million, or 22%. More than 90.0% of the
genome was covered by scaffolds spanning
.100 kbp long, and these averaged 92.2%
sequence and 7.8% gaps with a total of 2.492
Gbp of sequence. There were a total of
105,264 gaps among the 107,199 contigs that
belong to the 1940 scaffolds spanning .100
kbp. The average scaffold size was 1.4 Mbp,
the average contig size was 23.24 kbp, and
the average gap size was 2.0 kbp where each
distribution of sizes was exponential. As
such, averages tend to be underrepresentative
of the majority of the data. Figure 5 shows a
histogram of the bases in scaffolds of various
size ranges. Consider also that more than
49% of all gaps were ,500 bp long, more
than 62% of all gaps were ,1 kbp, and all
gaps are ,100 kbp long. Similarly, more than
73% of the sequence is in contigs . 30 kbp,
more than 49% is in contigs .100 kbp, and
the largest contig was 1.99 Mbp long. Table 3
provides summary statistics for the structure
of this assembly with a direct comparison to
the WGA assembly.

2.5 Comparison of the WGA and CSA
scaffolds
Having obtained two assemblies of the hu-
man genome via independent computational
processes (WGA and CSA), we compared
scaffolds from the two assemblies as another
means of investigating their completeness,
consistency, and contiguity. From each as-
sembly, a set of reference scaffolds contain-
ing at least 1000 fragments (Celera sequenc-
ing reads or bactig shreds) was obtained; this
amounted to 2218 WGA scaffolds and 1717
CSA scaffolds, for a total of 2.087 Gbp and
2.474 Gbp. The sequence of each reference
scaffold was compared to the sequence of all
scaffolds from the other assembly with which
it shared at least 20 fragments or at least 20%
of the fragments of the smaller scaffold. For
each such comparison, all matches of at least
200 bp with at most 2% mismatch were
tabulated.

From this tabulation, we estimated the
amount of unique sequence in each assembly
in two ways. The first was to determine the
number of bases of each assembly that were
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not covered by a matching segment in the
other assembly. Some 82.5 Mbp of the WGA
(3.95%) was not covered by the CSA, where-
as 204.5 Mbp (8.26%) of the CSA was not
covered by the WGA. This estimate did not
require any consistency of the assemblies or
any uniqueness of the matching segments.
Thus, another analysis was conducted in
which matches of less than 1 kbp between a
pair of scaffolds were excluded unless they
were confirmed by other matches having a
consistent order and orientation. This gives
some measure of consistent coverage: 1.982
Gbp (95.00%) of the WGA is covered by the
CSA, and 2.169 Gbp (87.69%) of the CSA is
covered by the WGA by this more stringent
measure.

The comparison of WGA to CSA also
permitted evaluation of scaffolds for structur-
al inconsistencies. We looked for instances in
which a large section of a scaffold from one
assembly matched only one scaffold from the
other assembly, but failed to match over the
full length of the overlap implied by the
matching segments. An initial set of candi-
dates was identified automatically, and then
each candidate was inspected by hand. From
this process, we identified 31 instances in
which the assemblies appear to disagree in a
nonlocal fashion. These cases are being fur-
ther evaluated to determine which assembly
is in error and why.

In addition, we evaluated local inconsis-
tencies of order or orientation. The following
results exclude cases in which one contig in
one assembly corresponds to more than one
overlapping contig in the other assembly (as
long as the order and orientation of the latter
agrees with the positions they match in the
former). Most of these small rearrangements
involved segments on the order of hundreds
of base pairs and rarely .1 kbp. We found a
total of 295 kbp (0.012%) in the CSA assem-
blies that were locally inconsistent with the
WGA assemblies, whereas 2.108 Mbp
(0.11%) in the WGA assembly were incon-
sistent with the CSA assembly.

The CSA assembly was a few percentage
points better in terms of coverage and slightly
more consistent than the WGA, because it
was in effect performing a few thousand shot-
gun assemblies of megabase-sized problems,
whereas the WGA is performing a shotgun
assembly of a gigabase-sized problem. When
one considers the increase of two-and-a-half
orders of magnitude in problem size, the in-
formation loss between the two is remarkably
small. Because CSA was logistically easier to
deliver and the better of the two results avail-
able at the time when downstream analyses
needed to be begun, all subsequent analysis
was performed on this assembly.

2.6 Mapping scaffolds to the genome
The final step in assembling the genome was to
order and orient the scaffolds on the chromo-
somes. We first grouped scaffolds together on
the basis of their order in the components from
CSA. These grouped scaffolds were reordered
by examining residual mate-pairing data be-
tween the scaffolds. We next mapped the scaf-
fold groups onto the chromosome using physi-
cal mapping data. This step depends on having
reliable high-resolution map information such
that each scaffold will overlap multiple mark-
ers. There are two genome-wide types of map
information available: high-density STS maps
and fingerprint maps of BAC clones developed
at Washington University (45). Among the ge-
nome-wide STS maps, GeneMap99 (GM99)
has the most markers and therefore was most
useful for mapping scaffolds. The two different
mapping approaches are complementary to one
another. The fingerprint maps should have bet-
ter local order because they were built by com-
parison of overlapping BAC clones. On the
other hand, GM99 should have a more reliable
long-range order, because the framework mark-
ers were derived from well-validated genetic
maps. Both types of maps were used as a
reference for human curation of the compo-
nents that were the input to the regional assem-
bly, but they did not determine the order of
sequences produced by the assembler.

In order to determine the effectiveness of
the fingerprint maps and GM99 for mapping
scaffolds, we first examined the reliability of
these maps by comparison with large scaf-
folds. Only 1% of the STS markers on the 10
largest scaffolds (those .9 Mbp) were
mapped on a different chromosome on
GM99. Two percent of the STS markers dis-
agreed in position by more than five frame-
work bins. However, for the fingerprint
maps, a 2% chromosome discrepancy was
observed, and on average 23.8% of BAC
locations in the scaffold sequence disagreed
with fingerprint map placement by more than
five BACs. When further examining the
source of discrepancy, it was found that most
of the discrepancy came from 4 of the 10
scaffolds, indicating this there is variation in
the quality of either the map or the scaffolds.
All four scaffolds were assembled, as well as
the other six, as judged by clone coverage
analysis, and showed the same low discrep-
ancy rate to GM99, and thus we concluded
that the fingerprint map global order in these
cases was not reliable. Smaller scaffolds had
a higher discordance rate with GM99 (4.21%
of STSs were discordant by more than five
framework bins), but a lower discordance rate
with the fingerprint maps (11% of BACs
disagreed with fingerprint maps by more than
five BACs). This observation agrees with the
clone coverage analysis (46 ) that Celera scaf-
fold construction was better supported by
long-range mate pairs in larger scaffolds than
in small scaffolds.

We created two orderings of Celera scaf-
folds on the basis of the markers (BAC or
STS) on these maps. Where the order of
scaffolds agreed between GM99 and the
WashU BAC map, we had a high degree of
confidence that that order was correct; these
scaffolds were termed “anchor scaffolds.”
Only scaffolds with a low overall discrepancy
rate with both maps were considered anchor
scaffolds. Scaffolds in GM99 bins were al-
lowed to permute in their order to match
WashU ordering, provided they did not vio-
late their framework orders. Orientation of
individual scaffolds was determined by the
presence of multiple mapped markers with
consistent order. Scaffolds with only one
marker have insufficient information to as-
sign orientation. We found 70.1% of the ge-
nome in anchored scaffolds, more than 99%
of which are also oriented (Table 4). Because
GM99 is of lower resolution than the WashU
map, a number of scaffolds without STS
matches could be ordered relative to the an-
chored scaffolds because they included se-
quence from the same or adjacent BACs on
the WashU map. On the other hand, because
of occasional WashU global ordering dis-
crepancies, a number of scaffolds determined
to be “unmappable” on the WashU map could
be ordered relative to the anchored scaffolds

Fig. 5. Distribution of scaffold sizes of the CSA. For each range of scaffold sizes, the percent of total
sequence is indicated.
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with GM99. These scaffolds were termed
“ordered scaffolds.” We found that 13.9% of
the assembly could be ordered by these ad-
ditional methods, and thus 84.0% of the ge-
nome was ordered unambiguously.

Next, all scaffolds that could be placed,
but not ordered, between anchors were as-
signed to the interval between the anchored
scaffolds and were deemed to be “bound-
ed” between them. For example, small scaf-
folds having STS hits from the same Gene-
Map bin or hitting the same BAC cannot be
ordered relative to each other, but can be
assigned a placement boundary relative to
other anchored or ordered scaffolds. The
remaining scaffolds either had no localiza-
tion information, conflicting information,
or could only be assigned to a generic
chromosome location. Using the above ap-
proaches, ;98% of the genome was an-
chored, ordered, or bounded.

Finally, we assigned a location for each
scaffold placed on the chromosome by
spreading out the scaffolds per chromosome.
We assumed that the remaining unmapped
scaffolds, constituting 2% of the genome,
were distributed evenly across the genome.
By dividing the sum of unmapped scaffold
lengths with the sum of the number of
mapped scaffolds, we arrived at an estimate
of interscaffold gap of 1483 bp. This gap was
used to separate all the scaffolds on each
chromosome and to assign an offset in the
chromosome.

During the scaffold-mapping effort, we en-
countered many problems that resulted in addi-
tional quality assessment and validation analy-
sis. At least 978 (3% of 33,173) BACs were
believed to have sequence data from more than
one location in the genome (47). This is con-
sistent with the bactig chimerism analysis re-
ported above in the Assembly Strategies sec-
tion. These BACs could not be assigned to
unique positions within the CSA assembly and
thus could not be used for ordering scaffolds.
Likewise, it was not always possible to assign
STSs to unique locations in the assembly be-
cause of genome duplications, repetitive ele-
ments, and pseudogenes.

Because of the time required for an ex-
haustive search for a perfect overlap, CSA
generated 21,607 intrascaffold gaps where
the mate-pair data suggested that the contigs
should overlap, but no overlap was found.
These gaps were defined as a fixed 50 bp in
length and make up 18.6% of the total
116,442 gaps in the CSA assembly.

We chose not to use the order of exons
implied in cDNA or EST data as a way of
ordering scaffolds. The rationale for not us-
ing this data was that doing so would have
biased certain regions of the assembly by
rearranging scaffolds to fit the transcript data
and made validation of both the assembly and
gene definition processes more difficult.

2.7 Assembly and validation analysis
We analyzed the assembly of the genome
from the perspectives of completeness
(amount of coverage of the genome) and
correctness (the structural accuracy of the
order and orientation and the consensus se-
quence of the assembly).

Completeness. Completeness is defined as
the percentage of the euchromatic sequence
represented in the assembly. This cannot be
known with absolute certainty until the eu-
chromatin sequence has been completed.
However, it is possible to estimate complete-
ness on the basis of (i) the estimated sizes of
intrascaffold gaps; (ii) coverage of the two
published chromosomes, 21 and 22 (48, 49);
and (iii) analysis of the percentage of an
independent set of random sequences (STS
markers) contained in the assembly. The
whole-genome libraries contain heterochro-
matic sequence and, although no attempt has
been made to assemble it, there may be in-
stances of unique sequence embedded in re-
gions of heterochromatin as were observed in
Drosophila (50, 51).

The sequences of human chromosomes 21
and 22 have been completed to high quality
and published (48, 49). Although this se-
quence served as input to the assembler, the
finished sequence was shredded into a shot-
gun data set so that the assembler had the
opportunity to assemble it differently from
the original sequence in the case of structural
polymorphisms or assembly errors in the
BAC data. In particular, the assembler must
be able to resolve repetitive elements at the
scale of components (generally multimega-
base in size), and so this comparison reveals
the level to which the assembler resolves
repeats. In certain areas, the assembly struc-
ture differs from the published versions of
chromosomes 21 and 22 (see below). The
consequence of the flexibility to assemble
“finished” sequence differently on the basis
of Celera data resulted in an assembly with
more segments than the chromosome 21 and
22 sequences. We examined the reasons why
there are more gaps in the Celera sequence
than in chromosomes 21 and 22 and expect
that they may be typical of gaps in other
regions of the genome. In the Celera assem-
bly, there are 25 scaffolds, each containing at
least 10 kb of sequence, that collectively span
94.3% of chromosome 21. Sixty-two scaf-
folds span 95.7% of chromosome 22. The
total length of the gaps remaining in the
Celera assembly for these two chromosomes
is 3.4 Mbp. These gap sequences were ana-
lyzed by RepeatMasker and by searching
against the entire genome assembly (52).
About 50% of the gap sequence consisted of
common repetitive elements identified by Re-
peatMasker; more than half of the remainder
was lower copy number repeat elements.

A more global way of assessing complete-

ness is to measure the content of an independent
set of sequence data in the assembly. We com-
pared 48,938 STS markers from Genemap99
(51) to the scaffolds. Because these markers
were not used in the assembly processes, they
provided a truly independent measure of com-
pleteness. ePCR (53) and BLAST (54) were
used to locate STSs on the assembled genome.
We found 44,524 (91%) of the STSs in the
mapped genome. An additional 2648 markers
(5.4%) were found by searching the unas-
sembled data or “chaff.” We identified 1283
STS markers (2.6%) not found in either Celera
sequence or BAC data as of September 2000,
raising the possibility that these markers may
not be of human origin. If that were the case,
the Celera assembled sequence would represent
93.4% of the human genome and the unas-
sembled data 5.5%, for a total of 98.9% cover-
age. Similarly, we compared CSA against
36,678 TNG radiation hybrid markers (55a)
using the same method. We found that 32,371
markers (88%) were located in the mapped
CSA scaffolds, with 2055 markers (5.6%)
found in the remainder. This gave a 94% cov-
erage of the genome through another genome-
wide survey.

Correctness. Correctness is defined as the
structural and sequence accuracy of the as-
sembly. Because the source sequences for the
Celera data and the GenBank data are from
different individuals, we could not directly
compare the consensus sequence of the as-

Table 4. Summary of scaffold mapping. Scaffolds
were mapped to the genome with different levels
of confidence (anchored scaffolds have the highest
confidence; unmapped scaffolds have the lowest).
Anchored scaffolds were consistently ordered by
the WashU BAC map and GM99. Ordered scaf-
folds were consistently ordered by at least one of
the following: the WashU BAC map, GM99, or
component tiling path. Bounded scaffolds had or-
der conflicts between at least two of the external
maps, but their placements were adjacent to a
neighboring anchored or ordered scaffold. Un-
mapped scaffolds had, at most, a chromosome
assignment. The scaffold subcategories are given
below each category.

Mapped
scaffold
category

Number Length (bp)
%

Total
length

Anchored 1,526 1,860,676,676 70
Oriented 1,246 1,852,088,645 70
Unoriented 280 8,588,031 0.3

Ordered 2,001 369,235,857 14
Oriented 839 329,633,166 12
Unoriented 1,162 39,602,691 2

Bounded 38,241 368,753,463 14
Oriented 7,453 274,536,424 10
Unoriented 30,788 94,217,039 4

Unmapped 11,823 55,313,737 2
Known 281 2,505,844 0.1

chromosome
Unknown

chromosome
11,542 52,807,893 2
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sembly against other finished sequence for
determining sequencing accuracy at the nu-
cleotide level, although this has been done for
identifying polymorphisms as described in
Section 6. The accuracy of the consensus
sequence is at least 99.96% on the basis of a
statistical estimate derived from the quality
values of the underlying reads.

The structural consistency of the assembly
can be measured by mate-pair analysis. In a
correct assembly, every mated pair of se-
quencing reads should be located on the con-
sensus sequence with the correct separation
and orientation between the pairs. A pair is
termed “valid” when the reads are in the
correct orientation and the distance between
them is within the mean 6 3 standard devi-
ations of the distribution of insert sizes of the
library from which the pair was sampled. A
pair is termed “misoriented” when the reads
are not correctly oriented, and is termed “mis-
separated” when the distance between the
reads is not in the correct range but the reads
are correctly oriented. The mean 6 the stan-
dard deviation of each library used by the
assembler was determined as described
above. To validate these, we examined all
reads mapped to the finished sequence of
chromosome 21 (48) and determined how
many incorrect mate pairs there were as a
result of laboratory tracking errors and chi-
merism (two different segments of the ge-
nome cloned into the same plasmid), and how
tight the distribution of insert sizes was for

those that were correct (Table 5). The stan-
dard deviations for all Celera libraries were
quite small, less than 15% of the insert
length, with the exception of a few 50-kbp
libraries. The 2- and 10-kbp libraries con-
tained less than 2% invalid mate pairs, where-
as the 50-kbp libraries were somewhat higher
(;10%). Thus, although the mate-pair infor-
mation was not perfect, its accuracy was such
that measuring valid, misoriented, and mis-
separated pairs with respect to a given assem-
bly was deemed to be a reliable instrument
for validation purposes, especially when sev-
eral mate pairs confirm or deny an ordering.

The clone coverage of the genome was
393, meaning that any given base pair was,
on average, contained in 39 clones or, equiv-
alently, spanned by 39 mate-paired reads.
Areas of low clone coverage or areas with a
high proportion of invalid mate pairs would
indicate potential assembly problems. We
computed the coverage of each base in the
assembly by valid mate pairs (Table 6). In
summary, for scaffolds .30 kbp in length,
less than 1% of the Celera assembly was in
regions of less than 33 clone coverage. Thus,
more than 99% of the assembly, including
order and orientation, is strongly supported
by this measure alone.

We examined the locations and number of
all misoriented and misseparated mates. In
addition to doing this analysis on the CSA
assembly (as of 1 October 2000), we also
performed a study of the PFP assembly as of

5 September 2000 (30, 55b). In this latter
case, Celera mate pairs had to be mapped to
the PFP assembly. To avoid mapping errors
due to high-fidelity repeats, the only pairs
mapped were those for which both reads
matched at only one location with less than
6% differences. A threshold was set such that
sets of five or more simultaneously invalid
mate pairs indicated a potential breakpoint,
where the construction of the two assemblies
differed. The graphic comparison of the CSA
chromosome 21 assembly with the published
sequence (Fig. 6A) serves as a validation of
this methodology. Blue tick marks in the
panels indicate breakpoints. There were a
similar (small) number of breakpoints on
both chromosome sequences. The exception
was 12 sets of scaffolds in the Celera assem-
bly (a total of 3% of the chromosome length
in 212 single-contig scaffolds) that were
mapped to the wrong positions because they
were too small to be mapped reliably. Figures
6 and 7 and Table 6 illustrate the mate-pair
differences and breakpoints between the two
assemblies. There was a higher percentage of
misoriented and misseparated mate pairs in
the large-insert libraries (50 kbp and BAC
ends) than in the small-insert libraries in both
assemblies (Table 6). The large-insert librar-
ies are more likely to identify discrepancies
simply because they span a larger segment of
the genome. The graphic comparison be-
tween the two assemblies for chromosome 8
(Fig. 6, B and C) shows that there are many

Table 5. Mate-pair validation. Celera fragment sequences were mapped to
the published sequence of chromosome 21. Each mate pair uniquely
mapped was evaluated for correct orientation and placement (number

of mate pairs tested). If the two mates had incorrect relative orienta-
tion or placement, they were considered invalid (number of invalid mate
pairs).

Library
type

Library
no.

Chromosome 21 Genome

Mean
insert
size
(bp)

SD
(bp)

SD/
mean
(%)

No. of
mate
pairs

tested

No. of
invalid
mate
pairs

%
invalid

Mean
insert

size (bp)

SD
(bp)

SD/
mean
(%)

2 kbp 1 2,081 106 5.1 3,642 38 1.0 2,082 90 4.3
2 1,913 152 7.9 28,029 413 1.5 1,923 118 6.1
3 2,166 175 8.1 4,405 57 1.3 2,162 158 7.3

10 kbp 4 11,385 851 7.5 4,319 80 1.9 11,370 696 6.1
5 14,523 1,875 12.9 7,355 156 2.1 14,142 1,402 9.9
6 9,635 1,035 10.7 5,573 109 2.0 9,606 934 9.7
7 10,223 928 9.1 34,079 399 1.2 10,190 777 7.6

50 kbp 8 64,888 2,747 4.2 16 1 6.3 65,500 5,504 8.4
9 53,410 5,834 10.9 914 170 18.6 53,311 5,546 10.4

10 52,034 7,312 14.1 5,871 569 9.7 51,498 6,588 12.8
11 52,282 7,454 14.3 2,629 213 8.1 52,282 7,454 14.3
12 46,616 7,378 15.8 2,153 215 10.0 45,418 9,068 20.0
13 55,788 10,099 18.1 2,244 249 11.1 53,062 10,893 20.5
14 39,894 5,019 12.6 199 7 3.5 36,838 9,988 27.1

BES 15 48,931 9,813 20.1 144 10 6.9 47,845 4,774 10.0
16 48,130 4,232 8.8 195 14 7.2 47,924 4,581 9.6
17 106,027 27,778 26.2 330 16 4.8 152,000 26,600 17.5
18 160,575 54,973 34.2 155 8 5.2 161,750 27,000 16.7
19 164,155 19,453 11.9 642 44 6.9 176,500 19,500 11.05

Sum 102,894 2,768 2.7
(mean 5 2.7)
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more breakpoints for the PFP assembly than
for the Celera assembly. Figure 7 shows the
breakpoint map (blue tick marks) for both
assemblies of each chromosome in a side-by-
side fashion. The order and orientation of
Celera’s assembly shows substantially fewer
breakpoints except on the two finished chro-
mosomes. Figure 7 also depicts large gaps
(.10 kbp) in both assemblies as red tick
marks. In the CSA assembly, the size of all
gaps have been estimated on the basis of the
mate-pair data. Breakpoints can be caused by
structural polymorphisms, because the two
assemblies were derived from different hu-
man genomes. They also reflect the unfin-
ished nature of both genome assemblies.

3 Gene Prediction and Annotation
Summary. To enumerate the gene inventory,
we developed an integrated, evidence-based
approach named Otto. The evidence used to
increase the likelihood of identifying genes
includes regions conserved between the
mouse and human genomes, similarity to
ESTs or other mRNA-derived data, or simi-
larity to other proteins. A comparison of Otto
(combined Otto-RefSeq and Otto homology)
with Genscan, a standard gene-prediction al-
gorithm, showed greater sensitivity (0.78 ver-
sus 0.50) and specificity (0.93 versus 0.63) of
Otto in the ability to define gene structure.
Otto-predicted genes were complemented
with a set of genes from three gene-prediction
programs that exhibited weaker, but still sig-
nificant, evidence that they may be ex-
pressed. Conservative criteria, requiring at
least two lines of evidence, were used to
define a set of 26,383 genes with good con-
fidence that were used for more detailed anal-
ysis presented in the subsequent sections.
Extensive manual curation to establish pre-
cise characterization of gene structure will be
necessary to improve the results from this
initial computational approach.

3.1 Automated gene annotation
A gene is a locus of cotranscribed exons. A
single gene may give rise to multiple tran-
scripts, and thus multiple distinct proteins
with multiple functions, by means of alterna-

tive splicing and alternative transcription ini-
tiation and termination sites. Our cells are
able to discern within the billions of base
pairs of the genomic DNA the signals for
initiating transcription and for splicing to-
gether exons separated by a few or hundreds
of thousands of base pairs. The first step in
characterizing the genome is to define the
structure of each gene and each transcription
unit.

The number of protein-coding genes in
mammals has been controversial from the
outset. Initial estimates based on reassocia-
tion data placed it between 30,000 to 40,000,
whereas later estimates from the brain were
.100,000 (56 ). More recent data from both
the corporate and public sectors, based on
extrapolations from EST, CpG island, and
transcript density–based extrapolations, have
not reduced this variance. The highest recent
number of 142,634 genes emanates from a
report from Incyte Pharmaceuticals, and is
based on a combination of EST data and the
association of ESTs with CpG islands (57 ).
In stark contrast are three quite different, and
much lower estimates: one of ;35,000 genes
derived with genome-wide EST data and
sampling procedures in conjunction with
chromosome 22 data (58); another of 28,000
to 34,000 genes derived with a comparative
methodology involving sequence conserva-
tion between humans and the puffer fish Te-
traodon nigroviridis (59); and a figure of
35,000 genes, which was derived simply by
extrapolating from the density of 770 known
and predicted genes in the 67 Mbp of chro-
mosomes 21 and 22, to the approximately
3-Gbp euchromatic genome.

The problem of computational identifica-
tion of transcriptional units in genomic DNA
sequence can be divided into two phases. The
first is to partition the sequence into segments
that are likely to correspond to individual
genes. This is not trivial and is a weakness of
most de novo gene-finding algorithms. It is
also critical to determining the number of
genes in the human gene inventory. The sec-
ond challenge is to construct a gene model
that reflects the probable structure of the
transcript(s) encoded in the region. This can

be done with reasonable accuracy when a
full-length cDNA has been sequenced or a
highly homologous protein sequence is
known. De novo gene prediction, although
less accurate, is the only way to find genes
that are not represented by homologous pro-
teins or ESTs. The following section de-
scribes the methods we have developed to
address these problems for the prediction of
protein-coding genes.

We have developed a rule-based expert sys-
tem, called Otto, to identify and characterize
genes in the human genome (60). Otto attempts
to simulate in software the process that a human
annotator uses to identify a gene and refine its
structure. In the process of annotating a region
of the genome, a human curator examines the
evidence provided by the computational pipe-
line (described below) and examines how var-
ious types of evidence relate to one another. A
curator puts different levels of confidence in
different types of evidence and looks for
certain patterns of evidence to support gene
annotation. For example, a curator may ex-
amine homology to a number of ESTs and
evaluate whether or not they can be connect-
ed into a longer, virtual mRNA. The curator
would also evaluate the strength of the simi-
larity and the contiguity of the match, in
essence asking whether any ESTs cross
splice-junctions and whether the edges of
putative exons have consensus splice sites.
This kind of manual annotation process was
used to annotate the Drosophila genome.

The Otto system can promote observed
evidence to a gene annotation in one of two
ways. First, if the evidence includes a high-
quality match to the sequence of a known
gene [here defined as a human gene repre-
sented in a curated subset of the RefSeq
database (61)], then Otto can promote this to
a gene annotation. In the second method, Otto
evaluates a broad spectrum of evidence and
determines if this evidence is adequate to
support promotion to a gene annotation.
These processes are described below.

Initially, gene boundaries are predicted on
the basis of examination of sets of overlap-
ping protein and EST matches generated by a
computational pipeline (62). This pipeline
searches the scaffold sequences against pro-
tein, EST, and genome-sequence databases to
define regions of sequence similarity and
runs three de novo gene-prediction programs.

To identify likely gene boundaries, re-
gions of the genome were partitioned by Otto
on the basis of sequence matches identified
by BLAST. Each of the database sequences
matched in the region under analysis was
compared by an algorithm that takes into
account both coordinates of the matching se-
quence, as well as the sequence type (e.g.,
protein, EST, and so forth). The results were
used to group the matches into bins of related
sequences that may define a gene and identify

Table 6. Genome-wide mate pair analysis of compartmentalized shotgun (CSA) and PFP assemblies.*

Genome
library

CSA PFP

%
valid

%
mis-

oriented

%
mis-

separated†

%
valid

%
mis-

oriented

%
mis-

separated†

2 kbp 98.5 0.6 1.0 95.7 2.0 2.3
10 kbp 96.7 1.0 2.3 81.9 9.6 8.6
50 kbp 93.9 4.5 1.5 64.2 22.3 13.5
BES 94.1 2.1 3.8 62.0 19.3 18.8
Mean 97.4 1.0 1.6 87.3 6.8 5.9

*Data for individual chromosomes can be found in Web fig. 3 on Science Online at www.sciencemag.org/cgi/content/
full/291/5507/1304/DC1. †Mates are misseparated if their distance is .3 SD from the mean library size.

T H E H U M A N G E N O M E

www.sciencemag.org SCIENCE VOL 291 16 FEBRUARY 2001 1317

 o
n 

F
eb

ru
ar

y 
18

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


gene boundaries. During this process, multiple
hits to the same region were collapsed to a
coherent set of data by tracking the coverage of
a region. For example, if a group of bases was
represented by multiple overlapping ESTs, the
union of these regions matched by the set of
ESTs on the scaffold was marked as being
supported by EST evidence. This resulted in a
series of “gene bins,” each of which was be-
lieved to contain a single gene. One weakness of
this initial implementation of the algorithm was
in predicting gene boundaries in regions of tan-
demly duplicated genes. Gene clusters frequent-
ly resulted in homologous neighboring genes

being joined together, resulting in an annotation
that artificially concatenated these gene models.

Next, known genes (those with exact match-
es of a full-length cDNA sequence to the ge-
nome) were identified, and the region corre-
sponding to the cDNA was annotated as a
predicted transcript. A subset of the curat-
ed human gene set RefSeq from the Nation-
al Center for Biotechnology Information
(NCBI) was included as a data set searched in
the computational pipeline. If a RefSeq tran-
script matched the genome assembly for at least
50% of its length at .92% identity, then the
SIM4 (63) alignment of the RefSeq transcript to

the region of the genome under analysis was
promoted to the status of an Otto annotation.
Because the genome sequence has gaps and
sequence errors such as frameshifts, it was not
always possible to predict a transcript that
agrees precisely with the experimentally deter-
mined cDNA sequence. A total of 6538 genes
in our inventory were identified and transcripts
predicted in this way.

Regions that have a substantial amount of
sequence similarity, but do not match known
genes, were analyzed by that part of the Otto
system that uses the sequence similarity in-
formation to predict a transcript. Here, Otto

Fig. 6. Comparison of the CSA and the PFP assembly.
(A) All of chromosome 21, (B) all of chromosome 8,
and (C) a 1-Mb region of chromosome 8 representing
a single Celera scaffold. To generate the figure, Celera
fragment sequences were mapped onto each assem-
bly. The PFP assembly is indicated in the upper third
of each panel; the Celera assembly is indicated in the
lower third. In the center of the panel, green lines
show Celera sequences that are in the same order and
orientation in both assemblies and form the longest
consistently ordered run of sequences. Yellow lines
indicate sequence blocks that are in the same orien-
tation, but out of order. Red lines indicate sequence
blocks that are not in the same orientation. For
clarity, in the latter two cases, lines are only drawn
between segments of matching sequence that are at
least 50 kbp long. The top and bottom thirds of each
panel show the extent of Celera mate-pair violations
(red, misoriented; yellow, incorrect distance between
the mates) for each assembly grouped by library size.
(Mate pairs that are within the correct distance, as
expected from the mean library insert size, are omit-
ted from the figure for clarity.) Predicted breakpoints,
corresponding to stacks of violated mate pairs of the
same type, are shown as blue ticks on each assembly
axis. Runs of more than 10,000 Ns are shown as cyan
bars. Plots of all 24 chromosomes can be seen in Web
fig. 3 on Science Online at www.sciencemag.org/cgi/
content/full/291/5507/1304/DC1.
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evaluates evidence generated by the compu-
tational pipeline, corresponding to conserva-
tion between mouse and human genomic
DNA, similarity to human transcripts (ESTs

and cDNAs), similarity to rodent transcripts
(ESTs and cDNAs), and similarity of the
translation of human genomic DNA to known
proteins to predict potential genes in the hu-

man genome. The sequence from the region
of genomic DNA contained in a gene bin was
extracted, and the subsequences supported by
any homology evidence were marked (plus 100

Fig. 7. Schematic view of the distribution of breakpoints and large gaps
on all chromosomes. For each chromosome, the upper pair of lines
represent the PFP assembly, and the lower pair of lines represent Celera’s

assembly. Blue tick marks represent breakpoints, whereas red tick marks
represent a gap of larger than 10,000 bp. The number of breakpoints per
chromosome is indicated in black, and the chromosome numbers in red.
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bases flanking these regions). The other bases
in the region, those not covered by any homol-
ogy evidence, were replaced by N’s. This se-
quence segment, with high confidence regions
represented by the consensus genomic se-
quence and the remainder represented by N’s,
was then evaluated by Genscan to see if a
consistent gene model could be generated. This
procedure simplified the gene-prediction task
by first establishing the boundary for the gene
(not a strength of most gene-finding algo-
rithms), and by eliminating regions with no
supporting evidence. If Genscan returned a
plausible gene model, it was further evaluated
before being promoted to an “Otto” annotation.
The final Genscan predictions were often quite
different from the prediction that Genscan re-
turned on the same region of native genomic
sequence. A weakness of using Genscan to
refine the gene model is the loss of valid, small
exons from the final annotation.

The next step in defining gene structures
based on sequence similarity was to compare
each predicted transcript with the homology-
based evidence that was used in previous steps
to evaluate the depth of evidence for each exon
in the prediction. Internal exons were consid-
ered to be supported if they were covered by
homology evidence to within 610 bases of
their edges. For first and last exons, the internal
edge was required to be within 10 bases, but the
external edge was allowed greater latitude to
allow for 59 and 39 untranslated regions
(UTRs). To be retained, a prediction for a
multi-exon gene must have evidence such that
the total number of “hits,” as defined above,
divided by the number of exons in the predic-
tion must be .0.66 or must correspond to a
RefSeq sequence. A single-exon gene must be
covered by at least three supporting hits (610
bases on each side), and these must cover the
complete predicted open reading frame. For
a single-exon gene, we also required that
the Genscan prediction include both a start
and a stop codon. Gene models that did not
meet these criteria were disregarded, and

those that passed were promoted to Otto
predictions. Homology-based Otto predic-
tions do not contain 39 and 59 untranslated
sequence. Although three de novo gene-finding
programs [GRAIL, Genscan, and FgenesH
(63)] were run as part of the computational
analysis, the results of these programs were not
directly used in making the Otto predictions.
Otto predicted 11,226 additional genes by
means of sequence similarity.

3.2 Otto validation
To validate the Otto homology-based process
and the method that Otto uses to define the
structures of known genes, we compared tran-
scripts predicted by Otto with their correspond-
ing (and presumably correct) transcript from a
set of 4512 RefSeq transcripts for which there
was a unique SIM4 alignment (Table 7). In
order to evaluate the relative performance of
Otto and Genscan, we made three comparisons.
The first involved a determination of the accu-
racy of gene models predicted by Otto with
only homology data other than the correspond-
ing RefSeq sequence (Otto homology in Table
7). We measured the sensitivity (correctly pre-
dicted bases divided by the total length of the
cDNA) and specificity (correctly predicted
bases divided by the sum of the correctly and
incorrectly predicted bases). Second, we exam-
ined the sensitivity and specificity of the Otto
predictions that were made solely with the Ref-
Seq sequence, which is the process that Otto
uses to annotate known genes (Otto-RefSeq).
And third, we determined the accuracy of the
Genscan predictions corresponding to these
RefSeq sequences. As expected, the alignment
method (Otto-RefSeq) was the most accurate,
and Otto-homology performed better than Gen-
scan by both criteria. Thus, 6.1% of true RefSeq
nucleotides were not represented in the Otto-
refseq annotations and 2.7% of the nucleotides
in the Otto-RefSeq transcripts were not con-
tained in the original RefSeq transcripts. The
discrepancies could come from legitimate
differences between the Celera assembly
and the RefSeq transcript due to polymor-
phisms, incomplete or incorrect data in the
Celera assembly, errors introduced by Sim4
during the alignment process, or the pres-
ence of alternatively spliced forms in the
data set used for the comparisons.

Because Otto uses an evidence-based ap-
proach to reconstruct genes, the absence of
experimental evidence for intervening exons
may inadvertantly result in a set of exons that
cannot be spliced together to give rise to a
transcript. In such cases, Otto may “split genes”
when in fact all the evidence should be com-
bined into a single transcript. We also examined
the tendency of these methods to incorrectly
split gene predictions. These trends are shown
in Fig. 8. Both RefSeq and homology-based
predictions by Otto split known genes into few-
er segments than Genscan alone.

3.3 Gene number
Recognizing that the Otto system is quite
conservative, we used a different gene-pre-
diction strategy in regions where the ho-
mology evidence was less strong. Here the
results of de novo gene predictions were
used. For these genes, we insisted that a
predicted transcript have at least two of the
following types of evidence to be included
in the gene set for further analysis: protein,
human EST, rodent EST, or mouse genome
fragment matches. This final class of pre-
dicted genes is a subset of the predictions
made by the three gene-finding programs
that were used in the computational pipe-
line. For these, there was not sufficient
sequence similarity information for Otto to
attempt to predict a gene structure. The
three de novo gene-finding programs re-
sulted in about 155,695 predictions, of
which ;76,410 were nonredundant (non-
overlapping with one another). Of these,
57,935 did not overlap known genes or
predictions made by Otto. Only 21,350 of
the gene predictions that did not overlap
Otto predictions were partially supported
by at least one type of sequence similarity
evidence, and 8619 were partially support-
ed by two types of evidence (Table 8).

The sum of this number (21,350) and the
number of Otto annotations (17,764), 39,114,
is near the upper limit for the human gene
complement. As seen in Table 8, if the re-
quirement for other supporting evidence is
made more stringent, this number drops rap-
idly so that demanding two types of evidence
reduces the total gene number to 26,383 and
demanding three types reduces it to ;23,000.
Requiring that a prediction be supported by
all four categories of evidence is too stringent
because it would eliminate genes that encode
novel proteins (members of currently unde-
scribed protein families). No correction for
pseudogenes has been made at this point in
the analysis.

In a further attempt to identify genes that
were not found by the autoannotation process
or any of the de novo gene finders, we ex-
amined regions outside of gene predictions
that were similar to the EST sequence, and
where the EST matched the genomic se-
quence across a splice junction. After correct-
ing for potential 39 UTRs of predicted genes,
about 2500 such regions remained. Addition
of a requirement for at least one of the fol-
lowing evidence types—homology to mouse
genomic sequence fragments, rodent ESTs,
or cDNAs—or similarity to a known protein
reduced this number to 1010. Adding this to
the numbers from the previous paragraph
would give us estimates of about 40,000,
27,000, and 24,000 potential genes in the
human genome, depending on the stringency
of evidence considered. Table 8 illustrates the
number of genes and presents the degree of

Table 7. Sensitivity and specificity of Otto and
Genscan. Sensitivity and specificity were calculat-
ed by first aligning the prediction to the published
RefSeq transcript, tallying the number (N) of
uniquely aligned RefSeq bases. Sensitivity is the
ratio of N to the length of the published RefSeq
transcript. Specificity is the ratio of N to the
length of the prediction. All differences are signif-
icant (Tukey HSD; P , 0.001).

Method Sensitivity Specificity

Otto (RefSeq only)* 0.939 0.973
Otto (homology)† 0.604 0.884
Genscan 0.501 0.633

*Refers to those annotations produced by Otto using only
the Sim4-polished RefSeq alignment rather than an evi-
dence-based Genscan prediction. †Refers to those
annotations produced by supplying all available evidence
to Genscan.
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confidence based on the supporting evidence.
Transcripts encoded by a set of 26,383 genes
were assembled for further analysis. This set
includes the 6538 genes predicted by Otto on
the basis of matches to known genes, 11,226
transcripts predicted by Otto based on homol-
ogy evidence, and 8619 from the subset of
transcripts from de novo gene-prediction pro-
grams that have two types of supporting ev-
idence. The 26,383 genes are illustrated along
chromosome diagrams in Fig. 1. These are a
very preliminary set of annotations and are
subject to all the limitations of an automated
process. Considerable refinement is still nec-
essary to improve the accuracy of these tran-
script predictions. All the predictions and
descriptions of genes and the associated evi-
dence that we present are the product of
completely computational processes, not ex-
pert curation. We have attempted to enumer-
ate the genes in the human genome in such a
way that we have different levels of confi-
dence based on the amount of supporting
evidence: known genes, genes with good pro-
tein or EST homology evidence, and de novo
gene predictions confirmed by modest ho-
mology evidence.

3.4 Features of human gene
transcripts
We estimate the average span for a “typi-
cal” gene in the human DNA sequence to
be about 27,894 bases. This is based on the
average span covered by RefSeq tran-
scripts, used because it represents our high-
est confidence set.

The set of transcripts promoted to gene
annotations varies in a number of ways. As
can be seen from Table 8 and Fig. 9, tran-
scripts predicted by Otto tend to be longer,
having on average about 7.8 exons, whereas
those promoted from gene-prediction pro-
grams average about 3.7 exons. The largest
number of exons that we have identified in a
transcript is 234 in the titin mRNA. Table 8
compares the amounts of evidence that sup-

port the Otto and other predicted transcripts.
For example, one can see that a typical Otto
transcript has 6.99 of its 7.81 exons supported
by protein homology evidence. As would be
expected, the Otto transcripts generally have
more support than do transcripts predicted by
the de novo methods.

4 Genome Structure
Summary. This section describes several of
the noncoding attributes of the assembled
genome sequence and their correlations with
the predicted gene set. These include an anal-
ysis of G1C content and gene density in the
context of cytogenetic maps of the genome,
an enumerative analysis of CpG islands, and
a brief description of the genome-wide repet-
itive elements.

4.1 Cytogenetic maps
Perhaps the most obvious, and certainly the
most visible, element of the structure of
the genome is the banding pattern produced
by Giemsa stain. Chromosomal banding
studies have revealed that about 17% to
20% of the human chromosome comple-
ment consists of C-bands, or constitutive
heterochromatin (64 ). Much of this hetero-
chromatin is highly polymorphic and con-
sists of different families of alpha satellite
DNAs with various higher order repeat
structures (65). Many chromosomes have
complex inter- and intrachromosomal du-
plications present in pericentromeric re-
gions (66 ). About 5% of the sequence reads
were identified as alpha satellite sequences;
these were not included in the assembly.

Fig. 8. Analysis of split genes resulting from different annotation methods. A set of 4512
Sim4-based alignments of RefSeq transcripts to the genomic assembly were chosen (see the text
for criteria), and the numbers of overlapping Genscan, Otto (RefSeq only) annotations based solely
on Sim4-polished RefSeq alignments, and Otto (homology) annotations (annotations produced by
supplying all available evidence to Genscan) were tallied. These data show the degree to which
multiple Genscan predictions and/or Otto annotations were associated with a single RefSeq
transcript. The zero class for the Otto-homology predictions shown here indicates that the
Otto-homology calls were made without recourse to the RefSeq transcript, and thus no Otto call
was made because of insufficient evidence.

Table 8. Numbers of exons and transcripts supported by various types of evidence for Otto and de novo gene prediction methods. Highlighted cells indicate
the gene sets analyzed in this paper (boldface, set of genes selected for protein analysis; italic, total set of accepted de novo predictions).

Total
Types of evidence No. of lines of evidence*

Mouse Rodent Protein Human $1 $2 $3 $4

Otto Number of
transcripts

17,969 17,065 14,881 15,477 16,374 17,968† 17,501 15,877 12,451

Number of
exons

141,218 111,174 89,569 108,431 118,869 140,710 127,955 99,574 59,804

De novo Number of
transcripts

58,032 14,463 5,094 8,043 9,220 21,350 8,619 4,947 1,904

Number of
exons

319,935 48,594 19,344 26,264 40,104 79,148 31,130 17,508 6,520

No. of exons per Otto 7.84 5.77 6.01 6.99 7.24 7.81 7.19 6.00 4.28
transcript De novo 5.53 3.17 3.80 3.27 4.36 3.7 3.56 3.42 3.16

*Four kinds of evidence (conservation in 33 mouse genomic DNA, similarity to human EST or cDNA, similarity to rodent EST or cDNA, and similarity to known proteins) were
considered to support gene predictions from the different methods. The use of evidence is quite liberal, requiring only a partial match to a single exon of predicted transcript. †This
number includes alternative splice forms of the 17,764 genes mentioned elsewhere in the text.
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Examination of pericentromeric regions is
ongoing.

The remaining ;80% of the genome, the
euchromatic component, is divisible into G-,
R-, and T-bands (67). These cytogenetic bands
have been presumed to differ in their nucleotide
composition and gene density, although we
have been unable to determine precise band
boundaries at the molecular level. T-bands are
the most G1C- and gene-rich, and G-bands are
G1C-poor (68). Bernardi has also offered a
description of the euchromatin at the molecular
level as long stretches of DNA of differing base
composition, termed isochores (denoted L, H1,
H2, and H3), which are .300 kbp in length
(69). Bernardi defined the L (light) isochores as
G1C-poor (,43%), whereas the H (heavy)
isochores fall into three G1C-rich classes rep-
resenting 24, 8, and 5% of the genome. Gene
concentration has been claimed to be very low
in the L isochores and 20-fold more enriched in
the H2 and H3 isochores (70). By examining
contiguous 50-kbp windows of G1C content
across the assembly, we found that regions of
G1C content .48% (H3 isochores) averaged
273.9 kbp in length, those with G1C content
between 43 and 48% (H11H2 isochores) aver-
aged 202.8 kbp in length, and the average span
of regions with ,43% (L isochores) was
1078.6 kbp. The correlation between G1C
content and gene density was also examined in
50-kbp windows along the assembled sequence
(Table 9 and Figs. 10 and 11). We found that
the density of genes was greater in regions of
high G1C than in regions of low G1C content,
as expected. However, the correlation between
G1C content and gene density was not as
skewed as previously predicted (69). A higher
proportion of genes were located in the G1C-
poor regions than had been expected.

Chromosomes 17, 19, and 22, which have
a disproportionate number of H3-containing
bands, had the highest gene density (Table
10). Conversely, of the chromosomes that we

found to have the lowest gene density, X, 4,
18, 13, and Y, also have the fewest H3 bands.
Chromosome 15, which also has few H3
bands, did not have a particularly low gene
density in our analysis. In addition, chromo-
some 8, which we found to have a low gene
density, does not appear to be unusual in its
H3 banding.

How valid is Ohno’s postulate (71) that
mammalian genomes consist of oases of genes
in otherwise essentially empty deserts? It ap-
pears that the human genome does indeed con-
tain deserts, or large, gene-poor regions. If we
define a desert as a region .500 kbp without a
gene, then we see that 605 Mbp, or about 20%
of the genome, is in deserts. These are not
uniformly distributed over the various chromo-
somes. Gene-rich chromosomes 17, 19, and 22
have only about 12% of their collective 171
Mbp in deserts, whereas gene-poor chromo-
somes 4, 13, 18, and X have 27.5% of their 492
Mbp in deserts (Table 11). The apparent lack of
predicted genes in these regions does not nec-
essarily imply that they are devoid of biological
function.

4.2 Linkage map
Linkage maps provide the basis for genetic
analysis and are widely used in the study of the
inheritance of traits and in the positional clon-
ing of genes. The distance metric, centimorgans
(cM), is based on the recombination rate be-
tween homologous chromosomes during meio-

sis. In general, the rate of recombination in
females is greater than that in males, and this
degree of map expansion is not uniform across
the genome (72). One of the opportunities en-
abled by a nearly complete genome sequence is
to produce the ultimate physical map, and to
fully analyze its correspondence with two other
maps that have been widely used in genome
and genetic analysis: the linkage map and the
cytogenetic map. This would close the loop
between the mapping and sequencing phases of
the genome project.

We mapped the location of the markers
that constitute the Genethon linkage map to
the genome. The rate of recombination, ex-
pressed as cM per Mbp, was calculated for
3-Mbp windows as shown in Table 12. High-
er rates of recombination in the telomeric
region of the chromosomes have been previ-
ously documented (73). From this mapping
result, there is a difference of 4.99 between
lowest rates and highest rates and the largest
difference of 4.4 between males and females
(4.99 to 0.47 on chromosome 16). This indi-
cates that the variability in recombination
rates among regions of the genome exceeds
the differences in recombination rates be-
tween males and females. The human ge-
nome has recombination hotspots, where re-
combination rates vary fivefold or more over
a space of 1 kbp, so the picture one gets of the
magnitude of variability in recombination
rate will depend on the size of the window

Fig. 9. Comparison of
the number of exons
per transcript between
the 17,968 Otto tran-
scripts and 21,350 de
novo transcript predic-
tions with at least one
line of evidence that
do not overlap with an
Otto prediction. Both
sets have the highest
number of transcripts
in the two-exon cate-
gory, but the de novo
gene predictions are
skewed much more
toward smaller tran-
scripts. In the Otto set,
19.7% of the tran-
scripts have one or
two exons, and 5.7%
have more than 20. In the de novo set, 49.3% of the transcripts have one or two exons, and 0.2% have more than 20.

Table 9. Characteristics of G1C in isochores.

Isochore G1C (%)
Fraction of genome Fraction of genes

Predicted* Observed Predicted* Observed

H3 .48 5 9.5 37 24.8
H1/H2 43–48 25 21.2 32 26.6
L ,43 67 69.2 31 48.5

*The predictions were based on Bernardi’s definitions (70) of the isochore structure of the human genome.
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examined. Unfortunately, too few meiotic
crossovers have occurred in Centre d’Étude
du Polymorphism Humain (CEPH) and other
reference families to provide a resolution any
finer than about 3 Mbp. The next challenge
will be to determine a sequence basis of
recombination at the chromosomal level. An
accurate predictor for the rate for variation in
recombination rates between any pair of
markers would be extremely useful in design-
ing markers to narrow a region of linkage,
such as in positional cloning projects.

4.3 Correlation between CpG islands
and genes
CpG islands are stretches of unmethylated
DNA with a higher frequency of CpG
dinucleotides when compared with the entire
genome (74 ). CpG islands are believed to
preferentially occur at the transcriptional start
of genes, and it has been observed that most
housekeeping genes have CpG islands at the
59 end of the transcript (75, 76 ). In addition,
experimental evidence indicates that CpG is-
land methylation is correlated with gene in-
activation (77 ) and has been shown to be
important during gene imprinting (78) and
tissue-specific gene expression (79)

Experimental methods have been used
that resulted in an estimate of 30,000 to
45,000 CpG islands in the human genome
(74, 80) and an estimate of 499 CpG islands
on human chromosome 22 (81). Larsen et
al. (76 ) and Gardiner-Garden and Frommer
(75) used a computational method to iden-
tify CpG islands and defined them as re-
gions of DNA of .200 bp that have a G1C
content of .50% and a ratio of observed

versus expected frequency of CG dinucle-
otide $0.6.

It is difficult to make a direct compari-
son of experimental definitions of CpG is-
lands with computational definitions be-
cause computational methods do not con-
sider the methylation state of cytosine and
experimental methods do not directly select
regions of high G1C content. However, we
can determine the correlation of CpG island
with gene starts, given a set of annotated
genomic transcripts and the whole genome
sequence. We have analyzed the publicly
available annotation of chromosome 22, as
well as using the entire human genome in
our assembly and the computationally an-
notated genes. A variation of the CpG is-
land computation was compared with
Larsen et al. (76 ). The main differences are
that we use a sliding window of 200 bp,
consecutive windows are merged only if
they overlap, and we recompute the CpG
value upon merging, thus rejecting any po-
tential island if it scores less than the
threshold.

To compute various CpG statistics, we
used two different thresholds of CG dinucle-
otide likelihood ratio. Besides using the orig-
inal threshold of 0.6 (method 1), we used a
higher threshold of CG dinucleotide likeli-
hood ratio of 0.8 (method 2), which results in
the number of CpG islands on chromosome
22 close to the number of annotated genes on
this chromosome. The main results are sum-
marized in Table 13. CpG islands computed
with method 1 predicted only 2.6% of the
CSA sequence as CpG, but 40% of the gene
starts (start codons) are contained inside a

CpG island. This is comparable to ratios re-
ported by others (82). The last two rows of
the table show the observed and expected
average distance, respectively, of the closest
CpG island from the first exon. The observed
average closest CpG islands are smaller than
the corresponding expected distances, con-
firming an association between CpG island
and the first exon.

We also looked at the distribution of CpG
island nucleotides among various sequence
classes such as intergenic regions, introns,
exons, and first exons. We computed the
likelihood score for each sequence class as
the ratio of the observed fraction of CpG
island nucleotides in that sequence class
and the expected fraction of CpG island
nucleotides in that sequence class. The re-
sult of applying method 1 on CSA were
scores of 0.89 for intergenic region, 1.2 for
intron, 5.86 for exon, and 13.2 for first
exon. The same trend was also found for
chromosome 22 and after the application of
a higher threshold (method 2) on both data
sets. In sum, genome-wide analysis has
extended earlier analysis and suggests a
strong correlation between CpG islands and
first coding exons.

4.4 Genome-wide repetitive elements
The proportion of the genome covered by
various classes of repetitive DNA is present-
ed in Table 14. We observed about 35% of
the genome in these repeat classes, very sim-
ilar to values reported previously (83). Repet-
itive sequence may be underrepresented in
the Celera assembly as a result of incomplete
repeat resolution, as discussed above. About
8% of the scaffold length is in gaps, and we
expect that much of this is repetitive se-
quence. Chromosome 19 has the highest re-
peat density (57%), as well as the highest
gene density (Table 10). Of interest, among
the different classes of repeat elements, we
observe a clear association of Alu elements
and gene density, which was not observed
between LINEs and gene density.

5 Genome Evolution
Summary. The dynamic nature of genome
evolution can be captured at several levels.
These include gene duplications mediated by
RNA intermediates (retrotransposition) and
segmental genomic duplications. In this sec-
tion, we document the genome-wide occur-
rence of retrotransposition events generating
functional (intronless paralogs) or inactive
genes (pseudogenes). Genes involved in
translational processes and nuclear regulation
account for nearly 50% of all intronless para-
logs and processed pseudogenes detected in
our survey. We have also cataloged the extent
of segmental genomic duplication and pro-
vide evidence for 1077 duplicated blocks
covering 3522 distinct genes.

Fig. 10. Relation between G1C content and gene density. The blue bars show the percent of the
genome (in 50-kbp windows) with the indicated G1C content. The percent of the total number of
genes associated with each G1C bin is represented by the yellow bars. The graph shows that about
5% of the genome has a G1C content of between 50 and 55%, but that this portion contains
nearly 15% of the genes.
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Fig. 11. Genome structural features.
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5.1 Retrotransposition in the human
genome

Retrotransposition of processed mRNA
transcripts into the genome results in func-
tional genes, called intronless paralogs, or
inactivated genes ( pseudogenes). A paralog
refers to a gene that appears in more than
one copy in a given organism as a result of

a duplication event. The existence of both
intron-containing and intronless forms of
genes encoding functionally similar or
identical proteins has been previously de-
scribed (84, 85). Cataloging these evolu-
tionary events on the genomic landscape is
of value in understanding the functional
consequences of such gene-duplication

events in cellular biology. Identification of
conserved intronless paralogs in the mouse
or other mammalian genomes should pro-
vide the basis for capturing the evolution-
ary chronology of these transposition
events and provide insights into gene loss
and accretion in the mammalian radiation.

A set of proteins corresponding to all 901

Fig. 11 (continued). Relation among gene density (orange), G1C content
(green), EST density (blue), and Alu density (pink) along the lengths of
each of the chromosomes. Gene density was calculated in 1-Mbp win-

dows. The percent of G1C nucleotides was calculated in 100-kbp
windows. The number of ESTs and Alu elements is shown per 100-kbp
window.
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Table 10. Features of the chromosomes. De novo/any refers to the union of de novo predictions that do not overlap Otto predictions and have at least one other type of supporting evidence; de novo/2x
refers to the union of de novo predictions that do not overlap Otto predictions and have at least two types of evidence. Deserts are regions of sequence with no annotated genes.

Chr.

Sequence coverage (CS assembly) Base composition Gene prediction* Gene density (genes/Mbp)

Size
(Mbp)

No. of
scaf-
folds

Largest
scaf-
fold

(Mbp)

No. of
scaf-
folds
.500
kbp

Se-
quence
covered

by
scaf-
folds
.500
kbp

% of
total
se-

quence
in

scaf-
folds
.500
kbp

%
repeat

%
GC

No of
CpG

islands
Otto

De
novo/
any

De
novo/

23

Total
(Otto
1 de
novo/
any)

Total
(Otto
1 de
novo/
any)

Se-
quence

in
deserts
.500/

kbp

Se-
quence

in
deserts

.1
Mbp

Otto
De

novo/
any

De
novo/

23

Otto
1 de
novo/
any

Otto
1 de
novo/

23

1 220 2,549 11 82 192 88 37 42 2,335 1,743 1,710 710 3,453 2,453 29 6 8 8 3 16 11
2 240 3,263 13 78 217 91 36 40 1,703 1,183 1,771 633 2,954 1,816 55 19 5 7 2 12 7
3 200 3,532 7 78 173 87 37 40 1,271 1,013 1,414 598 2,427 1,611 50 12 5 7 3 12 8
4 186 2,180 10 70 169 91 37 38 1,081 696 1,165 449 1,861 1,145 55 18 4 6 2 10 6
5 182 3,231 11 63 163 89 37 40 1,302 892 1,244 474 2,136 1,366 46 15 5 7 2 11 7
6 172 1,713 13 58 160 93 37 40 1,384 943 1,314 524 2,257 1,467 38 9 6 7 3 13 8
7 146 1,326 14 53 130 89 38 40 1,406 759 1,072 460 1,831 1,219 26 12 5 7 3 12 8
8 146 1,772 11 54 135 92 36 40 948 583 977 357 1,560 940 33 6 4 7 2 11 6
9 113 1,616 8 40 101 89 38 41 1,315 689 848 329 1,537 1,018 22 9 6 7 3 13 8

10 130 2,005 9 55 116 89 36 42 1,087 685 968 342 1,653 1,027 21 8 5 7 2 12 7
11 132 2,814 9 44 116 88 39 42 1,461 1,051 1,134 535 2,185 1,586 27 9 8 8 4 16 12
12 134 2,614 8 51 117 87 38 41 1,131 925 936 417 1,861 1,342 24 9 7 7 3 14 10
13 99 1,038 13 34 91 91 36 38 644 341 691 241 1,032 582 31 16 4 7 2 10 5
14 87 576 11 16 83 95 40 41 913 583 700 290 1,283 873 34 20 7 8 3 14 10
15 80 1,747 8 31 70 87 37 42 722 558 640 246 1,198 804 8 1 7 8 3 15 10
16 75 1,520 8 27 62 82 40 44 1,533 748 673 247 1,421 995 13 3 10 9 3 19 12
17 78 1,683 6 40 61 78 39 45 1,489 897 648 313 1,545 1,210 15 6 12 8 4 19 15
18 79 1,333 13 18 72 92 36 40 510 283 543 189 826 472 21 10 4 7 2 10 6
19 58 2,282 3 31 38 67 57 49 2,804 1,141 534 268 1,675 1,409 3 0 20 9 4 29 23
20 61 580 14 17 58 94 41 44 997 517 469 180 986 697 7 1 8 7 3 16 11
21 33 358 10 6 32 96 38 41 519 184 265 102 449 286 15 9 6 8 3 13 8
22 36 333 11 12 32 88 44 48 1,173 494 341 147 835 641 3 0 14 9 4 23 17
X 128 1,346 4 91 93 73 46 39 726 605 860 387 1,465 992 29 8 5 6 3 11 7
Y 19 638 2 10 12 65 50 39 65 55 155 49 210 104 4 2 3 8 2 11 5
U* 75 11,542 1 479 196 278 132 474 328
Total 2907 53,591 1,059 2,490 28,519 17,764 21,350 8,619 39,114 26,383 606 208
Avg. 116 2,144 9 44 104 87 40 41 1,160 714 812 333 1,526 1,047 25 9 7 7 3 14 9

*Chromosomal assignment unknown.

T
H

E
H

U
M

A
N

G
E

N
O

M
E

16
FEBRU

A
RY

2001
V

O
L

291
SC

IEN
C

E
w

w
w

.sciencem
ag.org

1
3

2
6

 on February 18, 2012www.sciencemag.orgDownloaded from 

http://www.sciencemag.org/


Otto-predicted, single-exon genes were sub-
jected to BLAST analysis against the proteins
encoded by the remaining multiexon predict-
ed transcripts. Using homology criteria of
70% sequence identity over 90% of the
length, we identified 298 instances of single-
to multi-exon correspondence. Of these 298
sequences, 97 were represented in the Gen-
Bank data set of experimentally validated
full-length genes at the stringency specified
and were verified by manual inspection.

We believe that these 97 cases may rep-
resent intronless paralogs (see Web table 1 on
Science Online at www.sciencemag.org/cgi/
content/full/291/5507/1304/DC1) of known
genes. Most of these are flanked by direct
repeat sequences, although the precise nature
of these repeats remains to be determined. All
of the cases for which we have high confi-
dence contain polyadenylated [poly(A)] tails
characteristic of retrotransposition.

Recent publications describing the phe-
nomenon of functional intronless paralogs
speculate that retrotransposition may serve as
a mechanism used to escape X-chromosomal
inactivation (84, 86 ). We do not find a bias
toward X chromosome origination of these
retrotransposed genes; rather, the results
show a random chromosome distribution of
both the intron-containing and corresponding
intronless paralogs. We also have found sev-
eral cases of retrotransposition from a single
source chromosome to multiple target chro-
mosomes. Interesting examples include the
retrotransposition of a five exon–containing
ribosomal protein L21 gene on chromosome
13 onto chromosomes 1, 3, 4, 7, 10, and 14,
respectively. The size of the source genes can
also show variability. The largest example is
the 31-exon diacylglycerol kinase zeta gene
on chromosome 11 that has an intronless
paralog on chromosome 13. Regardless of
route, retrotransposition with subsequent
gene changes in coding or noncoding regions
that lead to different functions or expression
patterns, represents a key route to providing
an enhanced functional repertoire in mam-
mals (87 ).

Our preliminary set of retrotransposed in-
tronless paralogs contains a clear overrepre-
sentation of genes involved in translational
processes (40% ribosomal proteins and 10%
translation elongation factors) and nuclear
regulation (HMG nonhistone proteins, 4%),
as well as metabolic and regulatory enzymes.
EST matches specific to a subset of intronless
paralogs suggest expression of these intron-
less paralogs. Differences in the upstream
regulatory sequences between the source
genes and their intronless paralogs could ac-
count for differences in tissue-specific gene
expression. Defining which, if any, of these
processed genes are functionally expressed
and translated will require further elucidation
and experimental validation.

5.2 Pseudogenes
A pseudogene is a nonfunctional copy that is
very similar to a normal gene but that has
been altered slightly so that it is not ex-

pressed. We developed a method for the pre-
liminary analysis of processed pseudogenes
in the human genome as a starting point in
elucidating the ongoing evolutionary forces

Table 11. Genome overview.

Size of the genome (including gaps) 2.91 Gbp
Size of the genome (excluding gaps) 2.66 Gbp
Longest contig 1.99 Mbp
Longest scaffold 14.4 Mbp
Percent of A1T in the genome 54
Percent of G1C in the genome 38
Percent of undetermined bases in the genome 9
Most GC-rich 50 kb Chr. 2 (66%)
Least GC-rich 50 kb Chr. X (25%)
Percent of genome classified as repeats 35
Number of annotated genes 26,383
Percent of annotated genes with unknown function 42
Number of genes (hypothetical and annotated) 39,114
Percent of hypothetical and annotated genes with unknown function 59
Gene with the most exons Titin (234 exons)
Average gene size 27 kbp
Most gene-rich chromosome Chr. 19 (23 genes/Mb)
Least gene-rich chromosomes Chr. 13 (5 genes/Mb),

Chr. Y (5 genes/Mb)
Total size of gene deserts (.500 kb with no annotated genes) 605 Mbp
Percent of base pairs spanned by genes 25.5 to 37.8*
Percent of base pairs spanned by exons 1.1 to 1.4*
Percent of base pairs spanned by introns 24.4 to 36.4*
Percent of base pairs in intergenic DNA 74.5 to 63.6*
Chromosome with highest proportion of DNA in annotated exons Chr. 19 (9.33)
Chromosome with lowest proportion of DNA in annotated exons Chr. Y (0.36)
Longest intergenic region (between annotated 1 hypothetical genes) Chr. 13 (3,038,416 bp)
Rate of SNP variation 1/1250 bp

*In these ranges, the percentages correspond to the annotated gene set (26, 383 genes) and the hypothetical 1
annotated gene set (39,114 genes), respectively.

Table 12. Rate of recombination per physical distance (cM/Mb) across the genome. Genethon markers
were placed on CSA-mapped assemblies, and then relative physical distances and rates were calculated
in 3-Mb windows for each chromosome. NA, not applicable.

Chrom.
Male Sex-average Female

Max. Avg. Min. Max. Avg. Min. Max. Avg. Min.

1 2.60 1.12 0.23 2.81 1.42 0.52 3.39 1.76 0.68
2 2.23 0.78 0.33 2.65 1.12 0.54 3.17 1.40 0.61
3 2.55 0.86 0.23 2.40 1.07 0.42 2.71 1.30 0.33
4 1.66 0.67 0.15 2.06 1.04 0.60 2.50 1.40 0.77
5 2.00 0.67 0.18 1.87 1.08 0.42 2.26 1.43 0.62
6 1.97 0.71 0.28 2.57 1.12 0.37 3.47 1.67 0.64
7 2.34 1.16 0.48 1.67 1.17 0.47 2.27 1.21 0.34
8 1.83 0.73 0.14 2.40 1.05 0.46 3.44 1.36 0.43
9 2.01 0.99 0.53 1.95 1.32 0.77 2.63 1.66 0.82

10 3.73 1.03 0.22 3.05 1.29 0.66 2.84 1.51 0.76
11 1.43 0.72 0.31 2.13 0.99 0.47 3.10 1.32 0.49
12 4.12 0.76 0.26 3.35 1.16 0.49 2.93 1.55 0.59
13 1.60 0.75 0.01 1.87 0.95 0.17 2.49 1.19 0.32
14 3.15 0.98 0.18 2.65 1.30 0.62 3.14 1.63 0.75
15 2.28 0.94 0.34 2.31 1.22 0.42 2.53 1.56 0.54
16 1.83 1.00 0.47 2.70 1.55 0.63 4.99 2.32 1.12
17 3.87 0.87 0.00 3.54 1.35 0.54 4.19 1.83 0.94
18 3.12 1.37 0.86 3.75 1.66 0.43 4.35 2.24 0.72
19 3.02 0.97 0.10 2.57 1.41 0.49 2.89 1.75 0.87
20 3.64 0.89 0.00 2.79 1.50 0.83 3.31 2.15 1.34
21 3.23 1.26 0.69 2.37 1.62 1.08 2.58 1.90 1.18
22 1.25 1.10 0.84 1.88 1.41 1.08 3.73 2.08 0.93
X NA NA NA NA NA NA 3.12 1.64 0.72
Y NA NA NA NA NA NA NA NA NA

Genome 4.12 0.88 0.00 3.75 1.22 0.17 4.99 1.55 0.32
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that account for gene inactivation. The gen-
eral structural characteristics of these pro-
cessed pseudogenes include the complete
lack of intervening sequences found in the
functional counterparts, a poly(A) tract at the
39 end, and direct repeats flanking the pseu-
dogene sequence. Processed pseudogenes oc-
cur as a result of retrotransposition, whereas
unprocessed pseudogenes arise from segmen-
tal genome duplication.

We searched the complete set of Otto-
predicted transcripts against the genomic se-
quence by means of BLAST. Genomic re-
gions corresponding to all Otto-predicted
transcripts were excluded from this analysis.
We identified 2909 regions matching with
greater than 70% identity over at least 70% of
the length of the transcripts that likely repre-
sent processed pseudogenes. This number is
probably an underestimate because specific
methods to search for pseudogenes were not
used.

We looked for correlations between
structural elements and the propensity for
retrotransposition in the human genome.
GC content and transcript length were com-
pared between the genes with processed

pseudogenes (1177 source genes) versus
the remainder of the predicted gene set.
Transcripts that give rise to processed pseu-
dogenes have shorter average transcript
length (1027 bp versus 1594 bp for the Otto
set) as compared with genes for which no
pseudogene was detected. The overall GC
content did not show any significant differ-
ence, contrary to a recent report (88). There
is a clear trend in gene families that are
present as processed pseudogenes. These
include ribosomal proteins (67%), lamin
receptors (10%), translation elongation fac-
tor alpha (5%), and HMG–non-histone pro-
teins (2%). The increased occurrence of
retrotransposition (both intronless paralogs
and processed pseudogenes) among genes
involved in translation and nuclear regula-
tion may reflect an increased transcription-
al activity of these genes.

5.3 Gene duplication in the human
genome
Building on a previously published procedure
(27 ), we developed a graph-theoretic algo-
rithm, called Lek, for grouping the predicted
human protein set into protein families (89).

The complete clusters that result from the
Lek clustering provide one basis for compar-
ing the role of whole-genome or chromosom-
al duplication in protein family expansion as
opposed to other means, such as tandem du-
plication. Because each complete cluster rep-
resents a closed and certain island of homol-
ogy, and because Lek is capable of simulta-
neously clustering protein complements of
several organisms, the number of proteins
contributed by each organism to a complete
cluster can be predicted with confidence de-
pending on the quality of the annotation of
each genome. The variance of each organ-
ism’s contribution to each cluster can then be
calculated, allowing an assessment of the rel-
ative importance of large-scale duplication
versus smaller-scale, organism-specific ex-
pansion and contraction of protein families,
presumably as a result of natural selection
operating on individual protein families with-
in an organism. As can be seen in Fig. 12, the
large variance in the relative numbers of hu-
man as compared with D. melanogaster and
Caenorhabditis elegans proteins in complete
clusters may be explained by multiple events
of relative expansions in gene families in
each of the three animal genomes. Such ex-
pansions would give rise to the distribution
that shows a peak at 1:1 in the ratio for
human-worm or human-fly clusters with the
slope spread covering both human and fly/
worm predominance, as we observed (Fig.
12). Furthermore, there are nearly as many
clusters where worm and fly proteins pre-
dominate despite the larger numbers of pro-
teins in the human. At face value, this anal-
ysis suggests that natural selection acting on
individual protein families has been a major
force driving the expansion of at least some
elements of the human protein set. However,
in our analysis, the difference between an
ancient whole-genome duplication followed
by loss, versus piecemeal duplication, cannot
be easily distinguished. In order to differen-
tiate these scenarios, more extended analyses
were performed.

5.4 Large-scale duplications
Using two independent methods, we
searched for large-scale duplications in the
human genome. First, we describe a protein
family– based method that identified highly
conserved blocks of duplication. We then
describe our comprehensive method for identi-
fying all interchromosomal block duplications.
The latter method identified a large number of
duplicated chromosomal segments covering
parts of all 24 chromosomes.

The first of the methods is based on the
idea of searching for blocks of highly con-
served homologous proteins that occur in
more than one location on the genome. For
this comparison, two genes were considered
equivalent if their protein products were de-

Table 13. Characteristics of CpG islands identified in chromosome 22 (34-Mbp sequence length) and the
whole genome (2.9-Gbp sequence length) by means of two different methods. Method 1 uses a CG
likelihood ratio of $0.6. Method 2 uses a CG likelihood ratio of $0.8.

Chromosome 22
Whole genome
(CS assembly)

Method 1 Method 2 Method 1 Method 2

Number of CpG islands
detected

5,211 522 195,706 26,876

Average length of island (bp) 390 535 395 497

Percent of sequence
predicted as CpG

5.9 0.8 2.6 0.4

Percent of first exons that
overlap a CpG island

44 25 42 22

Percent of first exons with
first position of exon
contained inside a CpG
island

37 22 40 21

Average distance between
first exon and closest CpG
island (bp)

1,013 10,486 2,182 17,021

Expected distance between
first exon and closest CpG
island (bp)

3,262 32,567 7,164 55,811

Table 14. Distribution of repetitive DNA in the compartmentalized shotgun assembly sequence.

Repetitive elements
Megabases in

assembled
sequences

Percent
of

assembly

Previously
predicted
(%) (83)

Alu 288 9.9 10.0
Mammalian interspersed repeat (MIR) 66 2.3 1.7
Medium reiteration (MER) 50 1.7 1.6
Long terminal repeat (LTR) 155 5.3 5.6
Long interspersed nucleotide element

(LINE)
466 16.1 16.7

Total 1025 35.3 35.6
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termined to be in the same family and the
same complete Lek cluster (essentially
paralogous genes) (89). Initially, each chro-
mosome was represented as a string of genes
ordered by the start codons for predicted
genes along the chromosome. We considered
the two strands as a single string, because
local inversions are relatively common events
relative to large-scale duplications. Each
gene was indexed according to the protein
family and Lek complete cluster (89). All
pairs of indexed gene strings were then
aligned in both the forward and reverse di-
rections with the Smith-Waterman algorithm
(90). A match between two proteins of the
same Lek complete cluster was given a score
of 10 and a mismatch 210, with gap open
and extend penalties of 24 and 21. With
these parameters, 19 conserved interchromo-
somal blocks of duplication were observed,
all of which were also detected and expanded
by the comprehensive method described be-
low. The detection of only a relatively small
number of block duplications was a conse-
quence of using an intrinsically conservative
method grounded in the conservative con-
straints of the complete Lek clusters.

In the second, more comprehensive ap-
proach, we aligned all chromosomes directly
with one another using an algorithm based on
the MUMmer system (91). This alignment
method uses a suffix tree data structure and a
linear-time algorithm to align long sequences
very rapidly; for example, two chromosomes
of 100 Mbp can be aligned in less than 20
min (on a Compaq Alpha computer) with 4
gigabytes of memory. This procedure was
used recently to identify numerous large-
scale segmental duplications among the five
chromosomes of A. thaliana (92); in that
organism, the method revealed that 60% of
the genome (66 Mbp) is covered by 24 very
large duplicated segments. For Arabidopsis, a
DNA-based alignment was sufficient to re-
veal the segmental duplications between
chromosomes; in the human genome, DNA
alignments at the whole-chromosome level
are insufficiently sensitive. Therefore, a mod-
ified procedure was developed and applied,
as follows. First, all 26,588 proteins
(9,675,713 million amino acids) were concat-
enated end-to-end in order as they occur
along each of the 24 chromosomes, irrespec-
tive of strand location. The concatenated pro-
tein set was then aligned against each chro-
mosome by the MUMmer algorithm. The
resulting matches were clustered to extract all
sets of three or more protein matches that
occur in close proximity on two different
chromosomes (93); these represent the can-
didate segmental duplications. A series of
filters were developed and applied to remove
likely false-positives from this set; for exam-
ple, small blocks that were spread across
many proteins were removed. To refine the

filtering methods, a shuffled protein set was
first created by taking the 26,588 proteins,
randomizing their order, and then partitioning
them into 24 shuffled chromosomes, each
containing the same number of proteins as the
true genome. This shuffled protein set has the
identical composition to the real genome; in
particular, every protein and every domain
appears the same number of times. The com-
plete algorithm was then applied to both the
real and the shuffled data, with the results on
the shuffled data being used to estimate the
false-positive rate. The algorithm after filter-
ing yielded 10,310 gene pairs in 1077 dupli-
cated blocks containing 3522 distinct genes;
tandemly duplicated expansions in many of
the blocks explain the excess of gene pairs to
distinct genes. In the shuffled data, by con-
trast, only 370 gene pairs were found, giving
a false-positive estimate of 3.6%. The most
likely explanation for the 1077 block dupli-
cations is ancient segmental duplications. In
many cases, the order of the proteins has been
shuffled, although proximity is preserved.
Out of the 1077 blocks, 159 contain only
three genes, 137 contain four genes, and 781
contain five or more genes.

To illustrate the extent of the detected
duplications, Fig. 13 shows all 1077 block
duplications indexed to each chromosome in
24 panels in which only duplications mapped
to the indexed chromosome are displayed.
The figure makes it clear that the duplications
are ubiquitous in the genome. One feature
that it displays is many relatively small chro-
mosomal stretches, with one-to-many dupli-
cation relationships that are graphically strik-
ing. One such example captured by the anal-
ysis is the well-documented olfactory recep-
tor (OR) family, which is scattered in blocks
throughout the genome and which has been
analyzed for genome-deployment reconstruc-

tions at several evolutionary stages (94 ). The
figure also illustrates that some chromo-
somes, such as chromosome 2, contain many
more detected large-scale duplications than
others. Indeed, one of the largest duplicated
segments is a large block of 33 proteins on
chromosome 2, spread among eight smaller
blocks in 2p, that aligns to a paralogous set on
chromosome 14, with one rearrangement (see
chromosomes 2 and 14 panels in Fig. 13).
The proteins are not contiguous but span a
region containing 97 proteins on chromo-
some 2 and 332 proteins on chromosome 14.
The likelihood of observing this many dupli-
cated proteins by chance, even over a span of
this length, is 2.3 3 10268 (93). This dupli-
cated set spans 20 Mbp on chromosome 2 and
63 Mbp on chromosome 14, over 70% of the
latter chromosome. Chromosome 2 also con-
tains a block duplication that is nearly as
large, which is shared by chromosome arm 2q
and chromosome 12. This duplication incor-
porates two of the four known Hox gene
clusters, but considerably expands the extent
of the duplications proximally and distally on
the pair of chromosome arms. This breadth of
duplication is also seen on the two chromo-
somes carrying the other two Hox clusters.

An additional large duplication, between
chromosomes 18 and 20, serves as a good
example to illustrate some of the features
common to many of the other observed large
duplications (Fig. 13, inset). This duplication
contains 64 detected ordered intrachromo-
somal pairs of homologous genes. After dis-
counting a 40-Mb stretch of chromosome 18
free of matches to chromosome 20, which is
likely to represent a large insert (between the
gene assignments “Krup rel” and “collagen
rel” on chromosome 18 in Fig. 13), the full
duplication segment covers 36 Mb on chro-
mosome 18 and 28 Mb on chromosome 20.

Fig. 12. Gene duplication in complete protein clusters. The predicted protein sets of human, worm,
and fly were subjected to Lek clustering (27). The numbers of clusters with varying ratios (whole
number) of human versus worm and human versus fly proteins per cluster were plotted.
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By this measure, the duplication segment
spans nearly half of each chromosome’s net
length. The most likely scenario is that the
whole span of this region was duplicated as a
single very large block, followed by shuffling
owing to smaller scale rearrangements. As
such, at least four subsequent rearrangements
would need to be invoked to explain the
relative insertions and inversions seen in the
duplicated segment interval. The 64 protein
pairs in this alignment occur among 217 pro-
tein assignments on chromosome 18, and
among 322 protein assignments on chromo-
some 20, for a density of involved proteins of
20 to 30%. This is consistent with an ancient
large-scale duplication followed by subse-
quent gene loss on one or both chromosomes.
Loss of just one member of a gene pair
subsequent to the duplication would result in
a failure to score a gene pair in the block; less
than 50% gene loss on the chromosomes
would lead to the duplication density ob-
served here. As an independent verification
of the significance of the alignments detect-
ed, it can be seen that a substantial number of
the pairs of aligning proteins in this duplica-
tion, including some of those annotated (Fig.
13), are those populating small Lek complete
clusters (see above). This indicates that they
are members of very small families of para-
logs; their relative scarcity within the genome
validates the uniqueness and robust nature of
their alignments.

Two additional qualitative features were ob-
served among many of the large-scale duplica-
tions. First, several proteins with disease asso-
ciations, with OMIM (Online Mendelian Inher-
itance in Man) assignments, are members of
duplicated segments (see web table 2 on Sci-
ence Online at www.sciencemag.org/cgi/con-
tent/full/291/5507/1304/DC1). We have also
observed a few instances where paralogs on
both duplicated segments are associated with
similar disease conditions. Notable among
these genes are proteins involved in hemostasis
(coagulation factors) that are associated with
bleeding disorders, transcriptional regulators
like the homeobox proteins associated with de-
velopmental disorders, and potassium channels
associated with cardiovascular conduction ab-
normalities. For each of these disease genes,
closer study of the paralogous genes in the
duplicated segment may reveal new insights
into disease causation, with further investiga-
tion needed to determine whether they might be
involved in the same or similar genetic diseases.
Second, although there is a conserved number
of proteins and coding exons predicted for spe-
cific large duplicated spans within the chromo-
some 18 to 20 alignment, the genomic DNA of
chromosome 18 in these specific spans is in
some cases more than 10-fold longer than the
corresponding chromosome 20 DNA. This se-
lective accretion of noncoding DNA (or con-
versely, loss of noncoding DNA) on one of a

pair of duplicated chromosome regions was
observed in many compared regions. Hypothe-
ses to explain which mechanisms foster these
processes must be tested.

Evaluation of the alignment results gives
some perspective on dating of the duplications.
As noted above, large-scale ancient segmental
duplication in fact best explains many of the
blocks detected by this genome-wide analysis.
The regions of human chromosomes involved
in the large-scale duplications expanded upon
above (chromosomes 2 to 14, 2 to 12, and 18 to
20) are each syntenic to a distinct mouse chro-
mosomal region. The corresponding mouse
chromosomal regions are much more similar in
sequence conservation, and even in order, to
their human synteny partners than the human
duplication regions are to each other. Further,
the corresponding mouse chromosomal regions
each bear a significant proportion of genes or-
thologous to the human genes on which the
human duplication assignments were made. On
the basis of these factors, the corresponding
mouse chromosomal spans, at coarse resolu-
tion, appear to be products of the same large-
scale duplications observed in humans. Al-
though further detailed analysis must be carried
out once a more complete genome is assembled
for mouse, the underlying large duplications
appear to predate the two species’ divergence.
This dates the duplications, at the latest, before
divergence of the primate and rodent lineages.
This date can be further refined upon examina-
tion of the synteny between human chromo-
somes and those of chicken, pufferfish (Fugu
rubripes), or zebrafish (95). The only sub-
stantial syntenic stretches mapped in these
species corresponding to both pairs of human
duplications are restricted to the Hox cluster
regions. When the synteny of these regions
(or others) to human chromosomes is extend-
ed with further mapping, the ages of the
nearly chromosome-length duplications seen
in humans are likely to be dated to the root of
vertebrate divergence.

The MUMmer-based results demonstrate
large block duplications that range in size from
a few genes to segments covering most of a
chromosome. The extent of segmental duplica-
tions raises the question of whether an ancient
whole-genome duplication event is the under-
lying explanation for the numerous duplicated
regions (96). The duplications have undergone
many deletions and subsequent rearrangements;
these events make it difficult to distinguish
between a whole-genome duplication and mul-
tiple smaller events. Further analysis, focused
especially on comparing the estimated ages of
all the block duplications, derived partially
from interspecies genome comparisons, will be
necessary to determine which of these two hy-
potheses is more likely. Comparisons of ge-
nomes of different vertebrates, and even cross-
phyla genome comparisons, will allow for the
deconvolution of duplications to eventually re-

veal the stagewise history of our genome, and
with it a history of the emergence of many of
the key functions that distinguish us from other
living things.

6 A Genome-Wide Examination of
Sequence Variations
Summary. Computational methods were used
to identify single-nucleotide polymorphisms
(SNPs) by comparison of the Celera sequence
to other SNP resources. The SNP rate be-
tween two chromosomes was ;1 per 1200 to
1500 bp. SNPs are distributed nonrandomly
throughout the genome. Only a very small
proportion of all SNPs (,1%) potentially
impact protein function based on the func-
tional analysis of SNPs that affect the pre-
dicted coding regions. This results in an es-
timate that only thousands, not millions, of
genetic variations may contribute to the struc-
tural diversity of human proteins.

Having a complete genome sequence enables
researchers to achieve a dramatic acceleration
in the rate of gene discovery, but only through
analysis of sequence variation in DNA can we
discover the genetic basis for variation in health
among human beings. Whole-genome shotgun
sequencing is a particularly effective method
for detecting sequence variation in tandem with
whole-genome assembly. In addition, we com-
pared the distribution and attributes of SNPs
ascertained by three other methods: (i) align-
ment of the Celera consensus sequence to the
PFP assembly, (ii) overlap of high-quality reads
of genomic sequence (referred to as “Kwok”;
1,120,195 SNPs) (97), and (iii) reduced repre-
sentation shotgun sequencing (referred to as
“TSC”; 632,640 SNPs) (98). These data were
consistent in showing an overall nucleotide di-
versity of ;8 3 1024, marked heterogeneity
across the genome in SNP density, and an
overwhelming preponderance of noncoding
variation that produces no change in expressed
proteins.

6.1 SNPs found by aligning the Celera
consensus to the PFP assembly
Ideally, methods of SNP discovery make full
use of sequence depth and quality at every site,
and quantitatively control the rate of false-pos-
itive and false-negative calls with an explicit
sampling model (99). Comparison of consensus
sequences in the absence of these details neces-
sitated a more ad hoc approach (quality scores
could not readily be obtained for the PFP as-
sembly). First, all sequence differences between
the two consensus sequences were identified;
these were then filtered to reduce the contribu-
tion of sequencing errors and misassembly. As
a measure of the effectiveness of the filtering
step, we monitored the ratio of transition and
transversion substitutions, because a 2:1 ratio
has been well documented as typical in mam-
malian evolution (100) and in human SNPs
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(101, 102). The filtering steps consisted of re-
moving variants where the quality score in the
Celera consensus was less than 30 and where
the density of variants was greater than 5 in 400
bp. These filters resulted in shifting the transi-
tion-to-transversion ratio from 1.57:1 to
1.89:1. When applied to 2.3 Gbp of alignments
between the Celera and PFP consensus se-
quences, these filters resulted in identification
of 2,104,820 putative SNPs from a total of
2,778,474 substitution differences. Overlaps
between this set of SNPs and those found by
other methods are described below.

6.2 Comparisons to public SNP
databases
Additional SNPs, including 2,536,021 from
dbSNP (www.ncbi.nlm.nih.gov/SNP) and
13,150 from HGMD (Human Gene Muta-
tion Database, from the University of
Wales, UK), were mapped on the Celera con-
sensus sequence by a sequence similarity
search with the program PowerBlast (103). The
two largest data sets in dbSNP are the Kwok
and TSC sets, with 47% and 25% of the dbSNP
records. Low-quality alignments with partial
coverage of the dbSNP sequence and align-
ments that had less than 98% sequence identity
between the Celera sequence and the dbSNP
flanking sequence were eliminated. dbSNP se-
quences mapping to multiple locations on the
Celera genome were discarded. A total of
2,336,935 dbSNP variants were mapped to
1,223,038 unique locations on the Celera se-
quence, implying considerable redundancy in
dbSNP. SNPs in the TSC set mapped to
585,811 unique genomic locations, and SNPs in
the Kwok set mapped to 438,032 unique loca-
tions. The combined unique SNPs counts used
in this analysis, including Celera-PFP, TSC,
and Kwok, is 2,737,668. Table 15 shows that a
substantial fraction of SNPs identified by one of
these methods was also found by another meth-
od. The very high overlap (36.2%) between the
Kwok and Celera-PFP SNPs may be due in part
to the use by Kwok of sequences that went into
the PFP assembly. The unusually low overlap
(16.4%) between the Kwok and TSC sets is due

to their being the smallest two sets. In addition,
24.5% of the Celera-PFP SNPs overlap with
SNPs derived from the Celera genome se-
quences (46). SNP validation in population
samples is an expensive and laborious process,
so confirmation on multiple data sets may pro-
vide an efficient initial validation “in silico” (by
computational analysis).

One means of assessing whether the
three sets of SNPs provide the same picture
of human variation is to tally the frequen-
cies of the six possible base changes in
each set of SNPs (Table 16). Previous mea-
sures of nucleotide diversity were mostly
derived from small-scale analysis on can-
didate genes (101), and our analysis with
all three data sets validates the previous
observations at the whole-genome scale.
There is remarkable homogeneity between
the SNPs found in the Kwok set, the TSC
set, and in our whole-genome shotgun (46 )
in this substitution pattern. Compared with
the rest of the data sets, Celera-PFP devi-
ates slightly from the 2 :1 transition-to-
transversion ratio observed in the other
SNP sets. This result is not unexpected,
because some fraction of the computation-
ally identified SNPs in the Celera-PFP
comparison may in fact be sequence errors.
A 2 :1 transition:transversion ratio for the
bona fide SNPs would be obtained if one
assumed that 15% of the sequence differ-
ences in the Celera-PFP set were a result of
( presumably random) sequence errors.

6.3 Estimation of nucleotide diversity
from ascertained SNPs
The number of SNPs identified varied
widely across chromosomes. In order to
normalize these values to the chromosome
size and sequence coverage, we used p, the
standard statistic for nucleotide diversity
(104 ). Nucleotide diversity is a measure of
per-site heterozygosity, quantifying the
probability that a pair of chromosomes
drawn from the population will differ at a
nucleotide site. In order to calculate nucle-
otide diversity for each chromosome, we
need to know the number of nucleotide
sites that were surveyed for variation, and
in methods like reduced respresentation se-
quencing, we need to know the sequence
quality and the depth of coverage at each

site. These data are not readily available, so
we could not estimate nucleotide diversity
from the TSC effort. Estimation of nucleo-
tide diversity from high-quality sequence
overlaps should be possible, but again,
more information is needed on the details
of all the alignments.

Estimation of nucleotide diversity from a
shotgun assembly entails calculating for each
column of the multialignment, the probability
that two or more distinct alleles are present,
and the probability of detecting a SNP if in
fact the alleles have different sequence (i.e.,
the probability of correct sequence calls). The
greater the depth of coverage and the higher
the sequence quality, the higher is the chance
of successfully detecting a SNP (105). Even
after correcting for variation in coverage, the
nucleotide diversity appeared to vary across
autosomes. The significance of this heteroge-
neity was tested by analysis of variance, with
estimates of p for 100-kbp windows to esti-
mate variability within chromosomes (for the
Celera-PFP comparison, F 5 29.73, P ,
0.0001).

Average diversity for the autosomes es-
timated from the Celera-PFP comparison
was 8.94 3 1024. Nucleotide diversity on
the X chromosome was 6.54 3 1024. The
X is expected to be less variable than au-
tosomes, because for every four copies of
autosomes in the population, there are only
three X chromosomes, and this smaller ef-
fective population size means that random
drift will more rapidly remove variation
from the X (106 ).

Having ascertained nucleotide variation
genome-wide, it appears that previous esti-
mates of nucleotide diversity in humans
based on samples of genes were reasonably
accurate (101, 102, 106, 107 ). Genome-wide,
our estimate of nucleotide diversity was
8.98 3 10-4 for the Celera-PFP alignment,
and a published estimate averaged over 10
densely resequenced human genes was
8.00 3 1024 (108).

6.4 Variation in nucleotide diversity
across the human genome
Such an apparently high degree of variabil-
ity among chromosomes in SNP density
raises the question of whether there is het-
erogeneity at a finer scale within chromo-

Table 15. Overlap of SNPs from genome-wide
SNP databases. Table entries are SNP counts for
each pair of data sets. Numbers in parentheses are
the fraction of overlap, calculated as the count of
overlapping SNPs divided by the number of SNPs
in the smaller of the two databases compared.
Total SNP counts for the databases are: Celera-
PFP, 2,104,820; TSC, 585,811; and Kwok 438,032.
Only unique SNPs in the TSC and Kwok data sets
were included.

TSC Kwok

Celera-PFP 188,694 158,532
(0.322) (0.362)

TSC 72,024
(0.164)

Table 16. Summary of nucleotide changes in different SNP data sets.

SNP data set
A/G
(%)

C/T
(%)

A/C
(%)

A/T
(%)

C/G
(%)

T/G
(%)

Transition:
transversion

Celera-PFP 30.7 30.7 10.3 8.6 9.2 10.3 1.59:1
Kwok* 33.7 33.8 8.5 7.0 8.6 8.4 2.07:1
TSC† 33.3 33.4 8.8 7.3 8.6 8.6 1.99:1

*November 2000 release of the NCBI database dbSNP (www.nci.nlm.nih.gov/SNP/) with the method defined as Overlap
SnpDetectionWithPolyBayes. The submitter of the data is Pui-Yan Kwok from Washington University. †November
2000 release of NCBI dbSNP (www.ncbi.nlm.nih.gov/SNP/) with the methods defined as TSC-Sanger, TSC-WICGR, and
TSC-WUGSC. The submitter of the data is Lincoln Stein from Cold Spring Harbor Laboratory.
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Fig. 13. Segmental duplica-
tions between chromo-
somes in the human ge-
nome. The 24 panels show
the 1077 duplicated blocks
of genes, containing 10,310
pairs of genes in total. Each
line represents a pair of ho-
mologous genes belonging
to a block; all blocks con-
tain at least three genes
on each of the chromo-
somes where they appear.
Each panel shows all the
duplications between a
single chromosome and
other chromosomes with
shared blocks. The chro-
mosome at the center of
each panel is shown as a
thick red line for emphasis.
Other chromosomes are
displayed from top to bot-
tom within each panel or-
dered by chromosome
number. The inset (bot-
tom, center right) shows a
close-up of one duplica-
tion between chromo-
somes 18 and 20, expand-
ed to display the gene
names of 12 of the 64
gene pairs shown.
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somes, and whether this heterogeneity is
greater than expected by chance. If SNPs
occur by random and independent mutations,
then it would seem that there ought to be a
Poisson distribution of numbers of SNPs in
fragments of arbitrary constant size. The ob-
served dispersion in the distribution of SNPs
in 100-kbp fragments was far greater than
predicted from a Poisson distribution (Fig.
14). However, this simplistic model ignores
the different recombination rates and popula-
tion histories that exist in different regions of
the genome. Population genetics theory holds
that we can account for this variation with a
mathematical formulation called the neutral
coalescent (109). Applying well-tested algo-
rithms for simulating the neutral coalescent
with recombination (110), and using an ef-
fective population size of 10,000 and a per-
base recombination rate equal to the mutation
rate (111), we generated a distribution of num-
bers of SNPs by this model as well (112). The
observed distribution of SNPs has a much larg-
er variance than either the Poisson model or the
coalescent model, and the difference is highly
significant. This implies that there is significant
variability across the genome in SNP density,
an observation that begs an explanation.

Several attributes of the DNA sequence
may affect the local density of SNPs, in-
cluding the rate at which DNA polymerase
makes errors and the efficacy of mismatch
repair. One key factor that is likely to be
associated with SNP density is the G1C
content, in part because methylated cy-
tosines in CpG dinucleotides tend to under-
go deamination to form thymine, account-
ing for a nearly 10-fold increase in the
mutation rate of CpGs over other dinucle-

otides. We tallied the GC content and nu-
cleotide diversities in 100-kbp windows
across the entire genome and found that the
correlation between them was positive (r 5
0.21) and highly significant (P , 0.0001),
but G1C content accounted for only a
small part of the variation.

6.5 SNPs by genomic class
To test homogeneity of SNP densities
across functional classes, we partitioned
sites into intergenic (defined as .5 kbp
from any predicted transcription unit), 59-
UTR, exonic (missense and silent), in-
tronic, and 39-UTR for 10,239 known
genes, derived from the NCBI RefSeq da-
tabase and all human genes predicted from
the Celera Otto annotation. In coding re-
gions, SNPs were categorized as either si-
lent, for those that do not change amino
acid sequence, or missense, for those that
change the protein product. The ratio of
missense to silent coding SNPs in Celera-
PFP, TSC, and Kwok sets (1.12, 0.91, and
0.78, respectively) shows a markedly re-
duced frequency of missense variants com-
pared with the neutral expectation, consis-
tent with the elimination by natural selec-
tion of a fraction of the deleterious amino
acid changes (112). These ratios are com-
parable to the missense-to-silent ratios of
0.88 and 1.17 found by Cargill et al. (101)
and by Halushka et al. (102). Similar re-
sults were observed in SNPs derived from
Celera shotgun sequences (46 ).

It is striking how small is the fraction of
SNPs that lead to potentially dysfunctional
alterations in proteins. In the 10,239 Ref-
Seq genes, missense SNPs were only about

0.12, 0.14, and 0.17% of the total SNP
counts in Celera-PFP, TSC, and Kwok
SNPs, respectively. Nonconservative pro-
tein changes constitute an even smaller frac-
tion of missense SNPs (47, 41, and 40% in
Celera-PFP, Kwok, and TSC). Intergenic re-
gions have been virtually unstudied (113), and
we note that 75% of the SNPs we identified
were intergenic (Table 17). The SNP rate was
highest in introns and lowest in exons. The SNP
rate was lower in intergenic regions than in
introns, providing one of the first discriminators
between these two classes of DNA. These SNP
rates were confirmed in the Celera SNPs, which
also exhibited a lower rate in exons than in
introns, and in extragenic regions than in in-
trons (46). Many of these intergenic SNPs will
provide valuable information in the form of
markers for linkage and association studies, and
some fraction is likely to have a regulatory
function as well.

7 An Overview of the Predicted
Protein-Coding Genes in the Human
Genome
Summary. This section provides an initial
computational analysis of the predicted
protein set with the aim of cataloging
prominent differences and similarities
when the human genome is compared with
other fully sequenced eukaryotic genomes.
Over 40% of the predicted protein set in
humans cannot be ascribed a molecular
function by methods that assign proteins to
known families. A protein domain– based
analysis provides a detailed catalog of the
prominent differences in the human ge-
nome when compared with the fly and
worm genomes. Prominent among these are
domain expansions in proteins involved in
developmental regulation and in cellular
processes such as neuronal function, hemo-
stasis, acquired immune response, and cy-
toskeletal complexity. The final enumera-
tion of protein families and details of pro-
tein structure will rely on additional exper-
imental work and comprehensive manual
curation.

A preliminary analysis of the predicted hu-
man protein-coding genes was conducted.
Two methods were used to analyze and clas-
sify the molecular functions of 26,588 pre-
dicted proteins that represent 26,383 gene
predictions with at least two lines of evidence
as described above. The first method was
based on an analysis at the level of protein
families, with both the publicly available
Pfam database (114, 115) and Celera’s Pan-
ther Classification (CPC) (Fig. 15) (116 ).
The second method was based on an analysis
at the level of protein domains, with both the
Pfam and SMART databases (115, 117 ).

The results presented here are prelimi-
nary and are subject to several limitations.

Fig. 14. SNP density in each 100-kbp interval as determined with Celera-PFP SNPs. The color codes
are as follows: black, Celera-PFP SNP density; blue, coalescent model; and red, Poisson distribution.
The figure shows that the distribution of SNPs along the genome is nonrandom and is not entirely
accounted for by a coalescent model of regional history.

T H E H U M A N G E N O M E

16 FEBRUARY 2001 VOL 291 SCIENCE www.sciencemag.org1334

 o
n 

F
eb

ru
ar

y 
18

, 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/


Both the gene predictions and functional
assignments have been made by using com-
putational tools, although the statistical
models in Panther, Pfam, and SMART have
been built, annotated, and reviewed by ex-
pert biologists. In the set of computationally
predicted genes, we expect both false-positive
predictions (some of these may in fact be inac-
tive pseudogenes) and false-negative predic-
tions (some human genes will not be computa-
tionally predicted). We also expect errors in
delimiting the boundaries of exons and genes.
Similarly, in the automatic functional assign-
ments, we also expect both false-positive and
false-negative predictions. The functional as-
signment protocol focuses on protein families
that tend to be found across several organisms,
or on families of known human genes. There-
fore, we do not assign a function to many genes
that are not in large families, even if the func-
tion is known. Unless otherwise specified, all
enumeration of the genes in any given family or
functional category was taken from the set of
26,588 predicted proteins, which were assigned
functions by using statistical score cutoffs de-
fined for models in Panther, Pfam, and
SMART.

For this initial examination of the pre-
dicted human protein set, three broad ques-
tions were asked: (i) What are the likely
molecular functions of the predicted gene
products, and how are these proteins cate-
gorized with current classification meth-
ods? (ii) What are the core functions that
appear to be common across the animals?

(iii) How does the human protein comple-
ment differ from that of other sequenced
eukaryotes?

7.1 Molecular functions of predicted
human proteins
Figure 15 shows an overview of the puta-
tive molecular functions of the predicted
26,588 human proteins that have at least
two lines of supporting evidence. About
41% (12,809) of the gene products could
not be classified from this initial analysis
and are termed proteins with unknown
functions. Because our automatic classifi-
cation methods treat only relatively large
protein families, there are a number of
“unclassified” sequences that do, in fact,
have a known or predicted function. For the
60% of the protein set that have automatic
functional predictions, the specific protein
functions have been placed into broad
classes. We focus here on molecular func-
tion (rather than higher order cellular pro-
cesses) in order to classify as many proteins
as possible. These functional predictions
are based on similarity to sequences of
known function.

In our analysis of the 12,731 additional low-
confidence predicted genes (those with only
one piece of supporting evidence), only 636
(5%) of these additional putative genes were
assigned molecular functions by the automated
methods. One-third of these 636 predicted
genes represented endogenous retroviral pro-
teins, further suggesting that the majority of

these unknown-function genes are not real
genes. Given that most of these additional
12,095 genes appear to be unique among the
genomes sequenced to date, many may simply
represent false-positive gene predictions.

The most common molecular functions are
the transcription factors and those involved in
nucleic acid metabolism (nucleic acid enzyme).
Other functions that are highly represented in
the human genome are the receptors, kinases,
and hydrolases. Not surprisingly, most of the
hydrolases are proteases. There are also many
proteins that are members of proto-oncogene
families, as well as families of “select regula-
tory molecules”: (i) proteins involved in specif-
ic steps of signal transduction such as hetero-
trimeric GTP-binding proteins (G proteins) and
cell cycle regulators, and (ii) proteins that mod-
ulate the activity of kinases, G proteins, and
phosphatases.

Fig. 15. Distribution
of the molecular
functions of 26,383
human genes. Each
slice lists the num-
bers and percentages
(in parentheses) of
human gene functions
assigned to a given
category of molecular
function. The outer cir-
cle shows the assign-
ment to molecular
function categories in
the Gene Ontology
(GO) (179), and the
inner circle shows
the assignment to
Celera’s Panther mo-
lecular function cate-
gories (116).

Table 17. Distribution of SNPs in classes of
genomic regions.

Genomic region
class

Size of
region

examined
(Mb)

Celera-PFP
SNP

density
(SNP/Mb)

Intergenic 2185 707
Gene (intron 1

exon)
646 917

Intron 615 921
First intron 164 808
Exon 31 529
First exon 10 592
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7.2 Evolutionary conservation of core
processes

Because of the various “model organism”
genome-sequencing projects that have al-
ready been completed, reasonable compara-
tive information is available for beginning the
analysis of the evolution of the human ge-
nome. The genomes of S. cerevisiae (“bak-
ers’ yeast”) (118) and two diverse inverte-
brates, C. elegans (a nematode worm) (119)
and D. melanogaster (fly) (26 ), as well as the
first plant genome, A. thaliana, recently com-
pleted (92), provide a diverse background for
genome comparisons.

We enumerated the “strict orthologs” con-
served between human and fly, and between
human and worm (Fig. 16) to address the
question, What are the core functions that
appear to be common across the animals?
The concept of orthology is important be-
cause if two genes are orthologs, they can be
traced by descent to the common ancestor of
the two organisms (an “evolutionarily con-
served protein set”), and therefore are likely
to perform similar conserved functions in the
different organisms. It is critical in this anal-
ysis to separate orthologs (a gene that appears
in two organisms by descent from a common
ancestor) from paralogs (a gene that appears
in more than one copy in a given organism by
a duplication event) because paralogs may
subsequently diverge in function. Following
the yeast-worm ortholog comparison in

(120), we identified two different cases for
each pairwise comparison (human-fly and
human-worm). The first case was a pair of
genes, one from each organism, for which
there was no other close homolog in either
organism. These are straightforwardly identi-
fied as orthologous, because there are no
additional members of the families that com-
plicate separating orthologs from paralogs.
The second case is a family of genes with
more than one member in either or both of the
organisms being compared. Chervitz et al.
(120) deal with this case by analyzing a
phylogenetic tree that described the relation-
ships between all of the sequences in both
organisms, and then looked for pairs of genes
that were nearest neighbors in the tree. If the
nearest-neighbor pairs were from different
organisms, those genes were presumed to be
orthologs. We note that these nearest neigh-
bors can often be confidently identified from
pairwise sequence comparison without hav-
ing to examine a phylogenetic tree (see leg-
end to Fig. 16). If the nearest neighbors are
not from different organisms, there has been
a paralogous expansion in one or both organ-
isms after the speciation event (and/or a gene
loss by one organism). When this one-to-one
correspondence is lost, defining an ortholog
becomes ambiguous. For our initial compu-
tational overview of the predicted human pro-
tein set, we could not answer this question for
every predicted protein. Therefore, we con-

sider only “strict orthologs,” i.e., the proteins
with unambiguous one-to-one relationships
(Fig. 16). By these criteria, there are 2758
strict human-fly orthologs, 2031 human-
worm (1523 in common between these sets).
We define the evolutionarily conserved set as
those 1523 human proteins that have strict
orthologs in both D. melanogaster and C.
elegans.

The distribution of the functions of the
conserved protein set is shown in Fig. 16.
Comparison with Fig. 15 shows that, not
surprisingly, the set of conserved proteins is
not distributed among molecular functions in
the same way as the whole human protein set.
Compared with the whole human set (Fig.
15), there are several categories that are over-
represented in the conserved set by a factor of
;2 or more. The first category is nucleic acid
enzymes, primarily the transcriptional ma-
chinery (notably DNA/RNA methyltrans-
ferases, DNA/RNA polymerases, helicases,
DNA ligases, DNA- and RNA-processing
factors, nucleases, and ribosomal proteins).
The basic transcriptional and translational
machinery is well known to have been con-
served over evolution, from bacteria through
to the most complex eukaryotes. Many ribo-
nucleoproteins involved in RNA splicing also
appear to be conserved among the animals.
Other enzyme types are also overrepresent-
ed (transferases, oxidoreductases, ligases,
lyases, and isomerases). Many of these en-

Fig. 16. Functions of putative
orthologs across vertebrate
and invertebrate genomes.
Each slice lists the number and
percentages (in parentheses)
of “strict orthologs” between
the human, fly, and worm ge-
nomes involved in a given cat-
egory of molecular function.
“Strict orthologs” are defined
here as bi-directional BLAST
best hits (180) such that each
orthologous pair (i) has a
BLASTP P-value of #10210

(120), and (ii) has a more sig-
nificant BLASTP score than
any paralogs in either organ-
ism, i.e., there has likely been
no duplication subsequent to
speciation that might make
the orthology ambiguous. This
measure is quite strict and is a
lower bound on the number of
orthologs. By these criteria,
there are 2758 strict human-
fly orthologs, and 2031 hu-
man-worm orthologs (1523 in
common between these sets).
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zymes are involved in intermediary metabo-
lism. The only exception is the hydrolase
category, which is not significantly overrep-
resented in the shared protein set. Proteases
form the largest part of this category, and
several large protease families have expanded
in each of these three organisms after their
divergence. The category of select regulatory
molecules is also overrepresented in the con-
served set. The major conserved families are
small guanosine triphosphatases (GTPases)
(especially the Ras-related superfamily, in-
cluding ADP ribosylation factor) and cell
cycle regulators (particularly the cullin fam-
ily, cyclin C family, and several cell division
protein kinases). The last two significantly
overrepresented categories are protein trans-
port and trafficking, and chaperones. The
most conserved groups in these categories are
proteins involved in coated vesicle-mediated
transport, and chaperones involved in protein
folding and heat-shock response [particularly
the DNAJ family, and heat-shock protein
60 (HSP60), HSP70, and HSP90 families].
These observations provide only a conserva-
tive estimate of the protein families in the
context of specific cellular processes that
were likely derived from the last common
ancestor of the human, fly, and worm. As
stated before, this analysis does not provide a
complete estimate of conservation across the
three animal genomes, as paralogous dupli-
cation makes the determination of true or-
thologs difficult within the members of con-
served protein families.

7.3 Differences between the human
genome and other sequenced
eukaryotic genomes
To explore the molecular building blocks of
the vertebrate taxon, we have compared the
human genome with the other sequenced
eukaryotic genomes at three levels: molec-
ular functions, protein families, and protein
domains.

Molecular differences can be correlated
with phenotypic differences to begin to reveal
the developmental and cellular processes that
are unique to the vertebrates. Tables 18 and
19 display a comparison among all sequenced
eukaryotic genomes, over selected protein/
domain families (defined by sequence simi-
larity, e.g., the serine-threonine protein ki-
nases) and superfamilies (defined by shared
molecular function, which may include sev-
eral sequence-related families, e.g., the cyto-
kines). In these tables we have focused on
(super) families that are either very large or
that differ significantly in humans compared
with the other sequenced eukaryote genomes.
We have found that the most prominent hu-
man expansions are in proteins involved in (i)
acquired immune functions; (ii) neural devel-
opment, structure, and functions; (iii) inter-
cellular and intracellular signaling pathways

in development and homeostasis; (iv) hemo-
stasis; and (v) apoptosis.

Acquired immunity. One of the most
striking differences between the human ge-
nome and the Drosophila or C. elegans ge-
nome is the appearance of genes involved in
acquired immunity (Tables 18 and 19). This
is expected, because the acquired immune
response is a defense system that only occurs
in vertebrates. We observe 22 class I and 22
class II major histocompatibility complex
(MHC) antigen genes and 114 other immu-
noglobulin genes in the human genome. In
addition, there are 59 genes in the cognate
immunoglobulin receptor family. At the do-
main level, this is exemplified by an expan-
sion and recruitment of the ancient immuno-
globulin fold to constitute molecules such as
MHC, and of the integrin fold to form several
of the cell adhesion molecules that mediate
interactions between immune effector cells
and the extracellular matrix. Vertebrate-spe-
cific proteins include the paracrine immune
regulators family of secreted 4-alpha helical
bundle proteins, namely the cytokines and
chemokines. Some of the cytoplasmic signal
transduction components associated with cy-
tokine receptor signal transduction are also
features that are poorly represented in the fly
and worm. These include protein domains
found in the signal transducer and activator of
transcription (STATs), the suppressors of cy-
tokine signaling (SOCS), and protein inhibi-
tors of activated STATs (PIAS). In contrast,
many of the animal-specific protein domains
that play a role in innate immune response,
such as the Toll receptors, do not appear to be
significantly expanded in the human genome.

Neural development, structure, and
function. In the human genome, as compared
with the worm and fly genomes, there is a
marked increase in the number of members
of protein families that are involved in
neural development. Examples include neu-
rotrophic factors such as ependymin, nerve
growth factor, and signaling molecules
such as semaphorins, as well as the number
of proteins involved directly in neural
structure and function such as myelin pro-
teins, voltage-gated ion channels, and syn-
aptic proteins such as synaptotagmin.
These observations correlate well with the
known phenotypic differences between the
nervous systems of these taxa, notably (i)
the increase in the number and connectivity
of neurons; (ii) the increase in number of
distinct neural cell types (as many as a
thousand or more in human compared with
a few hundred in fly and worm) (121); (iii)
the increased length of individual axons;
and (iv) the significant increase in glial cell
number, especially the appearance of my-
elinating glial cells, which are electrically
inert supporting cells differentiated from
the same stem cells as neurons. A number

of prominent protein expansions are in-
volved in the processes of neural develop-
ment. Of the extracellular domains that me-
diate cell adhesion, the connexin domain–
containing proteins (122) exist only in hu-
mans. These proteins, which are not present
in the Drosophila or C. elegans genomes,
appear to provide the constitutive subunits
of intercellular channels and the structural
basis for electrical coupling. Pathway find-
ing by axons and neuronal network forma-
tion is mediated through a subset of ephrins
and their cognate receptor tyrosine kinases
that act as positional labels to establish
topographical projections (123). The prob-
able biological role for the semaphorins (22
in human compared with 6 in the fly and 2
in the worm) and their receptors (neuropi-
lins and plexins) is that of axonal guidance
molecules (124 ). Signaling molecules such
as neurotrophic factors and some cytokines
have been shown to regulate neuronal cell
survival, proliferation, and axon guidance
(125). Notch receptors and ligands play
important roles in glial cell fate determina-
tion and gliogenesis (126 ).

Other human expanded gene families play
key roles directly in neural structure and
function. One example is synaptotagmin (ex-
panded more than twofold in humans relative
to the invertebrates), originally found to reg-
ulate synaptic transmission by serving as a
Ca21 sensor (or receptor) during synaptic
vesicle fusion and release (127 ). Of interest is
the increased co-occurrence in humans of
PDZ and the SH3 domains in neuronal-
specific adaptor molecules; examples include
proteins that likely modulate channel activity
at synaptic junctions (128). We also noted
expansions in several ion-channel families
(Table 19), including the EAG subfamily
(related to cyclic nucleotide gated channels),
the voltage-gated calcium/sodium channel
family, the inward-rectifier potassium chan-
nel family, and the voltage-gated potassium
channel, alpha subunit family. Voltage-gated
sodium and potassium channels are involved
in the generation of action potentials in neu-
rons. Together with voltage-gated calcium
channels, they also play a key role in cou-
pling action potentials to neurotransmitter re-
lease, in the development of neurites, and in
short-term memory. The recent observation
of a calcium-regulated association between
sodium channels and synaptotagmin may
have consequences for the establishment and
regulation of neuronal excitability (129).

Myelin basic protein and myelin-associat-
ed glycoprotein are major classes of protein
components in both the central and peripheral
nervous system of vertebrates. Myelin P0 is a
major component of peripheral myelin, and
myelin proteolipid and myelin oligodendro-
cyte glycopotein are found in the central
nervous system. Mutations in any of these
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Table 18. Domain-based comparative analysis of proteins in H. sapiens (H),
D. melanogaster (F), C. elegans (W), S. cerevisiae (Y), and A. thaliana (A). The
predicted protein set of each of the above eukaryotic organisms was analyzed
with Pfam version 5.5 using E value cutoffs of 0.001. The number of proteins
containing the specified Pfam domains as well as the total number of domains
(in parentheses) are shown in each column. Domains were categorized into
cellular processes for presentation. Some domains (i.e., SH2) are listed in

more than one cellular process. Results of the Pfam analysis may differ from
results obtained based on human curation of protein families, owing to the
limitations of large-scale automatic classifications. Representative examples
of domains with reduced counts owing to the stringent E value cutoff used for
this analysis are marked with a double asterisk (**). Examples include short
divergent and predominantly alpha-helical domains, and certain classes of
cysteine-rich zinc finger proteins.

Accession
number

Domain name Domain description H F W Y A

Developmental and homeostatic regulators
PF02039 Adrenomedullin Adrenomedullin 1 0 0 0 0
PF00212 ANP Atrial natriuretic peptide 2 0 0 0 0
PF00028 Cadherin Cadherin domain 100 (550) 14 (157) 16 (66) 0 0
PF00214 Calc_CGRP_IAPP Calcitonin/CGRP/IAPP family 3 0 0 0 0
PF01110 CNTF Ciliary neurotrophic factor 1 0 0 0 0
PF01093 Clusterin Clusterin 3 0 0 0 0
PF00029 Connexin Connexin 14 (16) 0 0 0 0
PF00976 ACTH_domain Corticotropin ACTH domain 1 0 0 0 0
PF00473 CRF Corticotropin-releasing factor family 2 1 0 0 0
PF00007 Cys_knot Cystine-knot domain 10 (11) 2 0 0 0
PF00778 DIX Dix domain 5 2 4 0 0
PF00322 Endothelin Endothelin family 3 0 0 0 0
PF00812 Ephrin Ephrin 7 (8) 2 4 0 0
PF01404 EPh_Ibd Ephrin receptor ligand binding domain 12 2 1 0 0
PF00167 FGF Fibroblast growth factor 23 1 1 0 0
PF01534 Frizzled Frizzled/Smoothened family membrane region 9 7 3 0 0
PF00236 Hormone6 Glycoprotein hormones 1 0 0 0 0
PF01153 Glypican Glypican 14 2 1 0 0
PF01271 Granin Grainin (chromogranin or secretogranin) 3 0 0 0 0
PF02058 Guanylin Guanylin precursor 1 0 0 0 0
PF00049 Insulin Insulin/IGF/Relaxin family 7 4 0 0 0
PF00219 IGFBP Insulin-like growth factor binding proteins 10 0 0 0 0
PF02024 Leptin Leptin 1 0 0 0 0
PF00193 Xlink LINK (hyaluron binding) 13 (23) 0 1 0 0
PF00243 NGF Nerve growth factor family 3 0 0 0 0
PF02158 Neuregulin Neuregulin family 4 0 0 0 0
PF00184 Hormone5 Neurohypophysial hormones 1 0 0 0 0
PF02070 NMU Neuromedin U 1 0 0 0 0
PF00066 Notch Notch (DSL) domain 3 (5) 2 (4) 2 (6) 0 0
PF00865 Osteopontin Osteopontin 1 0 0 0 0
PF00159 Hormone3 Pancreatic hormone peptides 3 0 0 0 0
PF01279 Parathyroid Parathyroid hormone family 2 0 0 0 0
PF00123 Hormone2 Peptide hormone 5 (9) 0 0 0 0
PF00341 PDGF Platelet-derived growth factor (PDGF) 5 1 0 0 0
PF01403 Sema Sema domain 27 (29) 8 (10) 3 (4) 0 0
PF01033 Somatomedin_B Somatomedin B domain 5 (8) 3 0 0 0
PF00103 Hormone Somatotropin 1 0 0 0 0
PF02208 Sorb Sorbin homologous domain 2 0 0 0 0
PF02404 SCF Stem cell factor 2 0 0 0 0
PF01034 Syndecan Syndecan domain 3 1 1 0 0
PF00020 TNFR_c6 TNFR/NGFR cysteine-rich region 17 (31) 1 0 0 0
PF00019 TGF-b Transforming growth factor b-like domain 27 (28) 6 4 0 0
PF01099 Uteroglobin Uteroglobin family 3 0 0 0 0
PF01160 Opiods_neuropep Vertebrate endogenous opioids neuropeptide 3 0 0 0 0
PF00110 Wnt Wnt family of developmental signaling proteins 18 7 (10) 5 0 0

Hemostasis
PF01821 ANATO Anaphylotoxin-like domain 6 (14) 0 0 0 0
PF00386 C1q C1q domain 24 0 0 0 0
PF00200 Disintegrin Disintegrin 18 2 3 0 0
PF00754 F5_F8_type_C F5/8 type C domain 15 (20) 5 (6) 2 0 0
PF01410 COLFI Fibrillar collagen C-terminal domain 10 0 0 0 0
PF00039 Fn1 Fibronectin type I domain 5 (18) 0 0 0 0
PF00040 Fn2 Fibronectin type II domain 11 (16) 0 0 0 0
PF00051 Kringle Kringle domain 15 (24) 2 2 0 0
PF01823 MACPF MAC/Perforin domain 6 0 0 0 0
PF00354 Pentaxin Pentaxin family 9 0 0 0 0
PF00277 SAA_proteins Serum amyloid A protein 4 0 0 0 0
PF00084 Sushi Sushi domain (SCR repeat) 53 (191) 11 (42) 8 (45) 0 0
PF02210 TSPN Thrombospondin N-terminal–like domains 14 1 0 0 0
PF01108 Tissue_fac Tissue factor 1 0 0 0 0
PF00868 Transglutamin_N Transglutaminase family 6 1 0 0 0
PF00927 Transglutamin_C Transglutaminase family 8 1 0 0 0
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Table 18 (Continued )

Accession
number

Domain name Domain description H F W Y A

PF00594 Gla Vitamin K-dependent carboxylation/gamma-
carboxyglutamic (GLA) domain

11 0 0 0 0

Immune response
PF00711 Defensin_beta Beta defensin 1 0 0 0 0
PF00748 Calpain_inhib Calpain inhibitor repeat 3 (9) 0 0 0 0
PF00666 Cathelicidins Cathelicidins 2 0 0 0 0
PF00129 MHC_I Class I histocompatibility antigen, domains alpha 1

and 2
18 (20) 0 0 0 0

PF00993 MHC_II_alpha** Class II histocompatibility antigen, alpha domain 5 (6) 0 0 0 0
PF00969 MHC_II_beta** Class II histocompatibility antigen, beta domain 7 0 0 0 0
PF00879 Defensin_propep Defensin propeptide 3 0 0 0 0
PF01109 GM_CSF Granulocyte-macrophage colony-stimulating factor 1 0 0 0 0
PF00047 Ig Immunoglobulin domain 381 (930) 125 (291) 67 (323) 0 0
PF00143 Interferon Interferon alpha/beta domain 7 (9) 0 0 0 0
PF00714 IFN-gamma Interferon gamma 1 0 0 0 0
PF00726 IL10 Interleukin-10 1 0 0 0 0
PF02372 IL15 Interleukin-15 1 0 0 0 0
PF00715 IL2 Interleukin-2 1 0 0 0 0
PF00727 IL4 Interleukin-4 1 0 0 0 0
PF02025 IL5 Interleukin-5 1 0 0 0 0
PF01415 IL7 Interleukin-7/9 family 1 0 0 0 0
PF00340 IL1 Interleukin-1 7 0 0 0 0
PF02394 IL1_propep Interleukin-1 propeptide 1 0 0 0 0
PF02059 IL3 Interleukin-3 1 0 0 0 0
PF00489 IL6 Interleukin-6/G-CSF/MGF family 2 0 0 0 0
PF01291 LIF_OSM Leukemia inhibitory factor (LIF)/oncostatin (OSM)

family
2 0 0 0 0

PF00323 Defensins Mammalian defensin 2 0 0 0 0
PF01091 PTN_MK PTN/MK heparin-binding protein 2 0 0 0 0
PF00277 SAA_proteins Serum amyloid A protein 4 0 0 0 0
PF00048 IL8 Small cytokines (intecrine/chemokine),

interleukin-8 like
32 0 0 0 0

PF01582 TIR TIR domain 18 8 2 0 131 (143)
PF00229 TNF TNF (tumor necrosis factor) family 12 0 0 0 0
PF00088 Trefoil Trefoil (P-type) domain 5 (6) 0 2 0 0

PI-PY-rho GTPase signaling
PF00779 BTK BTK motif 5 1 0 0 0
PF00168 C2 C2 domain 73 (101) 32 (44) 24 (35) 6 (9) 66 (90)
PF00609 DAGKa Diacylglycerol kinase accessory domain (presumed) 9 4 7 0 6
PF00781 DAGKc Diacylglycerol kinase catalytic domain (presumed) 10 8 8 2 11 (12)
PF00610 DEP Domain found in Dishevelled, Egl-10, and

Pleckstrin (DEP)
12 (13) 4 10 5 2

PF01363 FYVE FYVE zinc finger 28 (30) 14 15 5 15
PF00996 GDI GDP dissociation inhibitor 6 2 1 1 3
PF00503 G-alpha G-protein alpha subunit 27 (30) 10 20 (23) 2 5
PF00631 G-gamma G-protein gamma like domains 16 5 5 1 0
PF00616 RasGAP GTPase-activator protein for Ras-like GTPase 11 5 8 3 0
PF00618 RasGEFN Guanine nucleotide exchange factor for Ras-like

GTPases; N-terminal motif
9 2 3 5 0

PF00625 Guanylate_kin Guanylate kinase 12 8 7 1 4
PF02189 ITAM Immunoreceptor tyrosine-based activation motif 3 0 0 0 0
PF00169 PH PH domain 193 (212) 72 (78) 65 (68) 24 23
PF00130 DAG_PE-bind Phorbol esters/diacylglycerol binding domain (C1

domain)
45 (56) 25 (31) 26 (40) 1 (2) 4

PF00388 PI-PLC-X Phosphatidylinositol-specific phospholipase C, X
domain

12 3 7 1 8

PF00387 PI-PLC-Y Phosphatidylinositol-specific phospholipase C, Y
domain

11 2 7 1 8

PF00640 PID Phosphotyrosine interaction domain (PTB/PID) 24 (27) 13 11 (12) 0 0
PF02192 PI3K_p85B PI3-kinase family, p85-binding domain 2 1 1 0 0
PF00794 PI3K_rbd PI3-kinase family, ras-binding domain 6 3 1 0 0
PF01412 ArfGAP Putative GTP-ase activating protein for Arf 16 9 8 6 15
PF02196 RBD Raf-like Ras-binding domain 6 (7) 4 1 0 0
PF02145 Rap_GAP Rap/ran-GAP 5 4 2 0 0
PF00788 RA Ras association (RalGDS/AF-6) domain 18 (19) 7 (9) 6 1 0
PF00071 Ras Ras family 126 56 (57) 51 23 78
PF00617 RasGEF RasGEF domain 21 8 7 5 0
PF00615 RGS Regulator of G protein signaling domain 27 6 (7) 12 (13) 1 0
PF02197 RIIa Regulatory subunit of type II PKA R-subunit 4 1 2 1 0
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Table 18 (Continued )

Accession
number

Domain name Domain description H F W Y A

PF00620 RhoGAP RhoGAP domain 59 19 20 9 8
PF00621 RhoGEF RhoGEF domain 46 23 (24) 18 (19) 3 0
PF00536 SAM SAM domain (Sterile alpha motif) 29 (31) 15 8 3 6
PF01369 Sec7 Sec7 domain 13 5 5 5 9
PF00017 SH2 Src homology 2 (SH2) domain 87 (95) 33 (39) 44 (48) 1 3
PF00018 SH3 Src homology 3 (SH3) domain 143 (182) 55 (75) 46 (61) 23 (27) 4
PF01017 STAT STAT protein 7 1 1 (2) 0 0
PF00790 VHS VHS domain 4 2 4 4 8
PF00568 WH1 WH1 domain 7 2 2 (3) 1 0

Domains involved in apoptosis
PF00452 Bcl-2 Bcl-2 9 2 1 0 0
PF02180 BH4 Bcl-2 homology region 4 3 0 1 0 0
PF00619 CARD Caspase recruitment domain 16 0 2 0 0
PF00531 Death Death domain 16 5 7 0 0
PF01335 DED Death effector domain 4 (5) 0 0 0 0
PF02179 BAG Domain present in Hsp70 regulators 5 (8) 3 2 1 5
PF00656 ICE_p20 ICE-like protease (caspase) p20 domain 11 7 3 0 0
PF00653 BIR Inhibitor of Apoptosis domain 8 (14) 5 (9) 2 (3) 1 (2) 0

Cytoskeletal
PF00022 Actin Actin 61 (64) 15 (16) 12 9 (11) 24
PF00191 Annexin Annexin 16 (55) 4 (16) 4 (11) 0 6 (16)
PF00402 Calponin Calponin family 13 (22) 3 7 (19) 0 0
PF00373 Band_41 FERM domain (Band 4.1 family) 29 (30) 17 (19) 11 (14) 0 0
PF00880 Nebulin_repeat Nebulin repeat 4 (148) 1 (2) 1 0 0
PF00681 Plectin_repeat Plectin repeat 2 (11) 0 0 0 0
PF00435 Spectrin Spectrin repeat 31 (195) 13 (171) 10 (93) 0 0
PF00418 Tubulin-binding Tau and MAP proteins, tubulin-binding 4 (12) 1 (4) 2 (8) 0 0
PF00992 Troponin Troponin 4 6 8 0 0
PF02209 VHP Villin headpiece domain 5 2 2 0 5
PF01044 Vinculin Vinculin family 4 2 1 0 0

ECM adhesion
PF01391 Collagen Collagen triple helix repeat (20 copies) 65 (279) 10 (46) 174 (384) 0 0
PF01413 C4 C-terminal tandem repeated domain in type 4

procollagen
6 (11) 2 (4) 3 (6) 0 0

PF00431 CUB CUB domain 47 (69) 9 (47) 43 (67) 0 0
PF00008 EGF EGF-like domain 108 (420) 45 (186) 54 (157) 0 1
PF00147 Fibrinogen_C Fibrinogen beta and gamma chains, C-terminal

globular domain
26 10 (11) 6 0 0

PF00041 Fn3 Fibronectin type III domain 106 (545) 42 (168) 34 (156) 0 1
PF00757 Furin-like Furin-like cysteine rich region 5 2 1 0 0
PF00357 Integrin_A Integrin alpha cytoplasmic region 3 1 2 0 0
PF00362 Integrin_B Integrins, beta chain 8 2 2 0 0
PF00052 Laminin_B Laminin B (Domain IV) 8 (12) 4 (7) 6 (10) 0 0
PF00053 Laminin_EGF Laminin EGF-like (Domains III and V) 24 (126) 9 (62) 11 (65) 0 0
PF00054 Laminin_G Laminin G domain 30 (57) 18 (42) 14 (26) 0 0
PF00055 Laminin_Nterm Laminin N-terminal (Domain VI) 10 6 4 0 0
PF00059 Lectin_c Lectin C-type domain 47 (76) 23 (24) 91 (132) 0 0
PF01463 LRRCT Leucine rich repeat C-terminal domain 69 (81) 23 (30) 7 (9) 0 0
PF01462 LRRNT Leucine rich repeat N-terminal domain 40 (44) 7 (13) 3 (6) 0 0
PF00057 Ldl_recept_a Low-density lipoprotein receptor domain class A 35 (127) 33 (152) 27 (113) 0 0
PF00058 Ldl_recept_b Low-density lipoprotein receptor repeat class B 15 (96) 9 (56) 7 (22) 0 0
PF00530 SRCR Scavenger receptor cysteine-rich domain 11 (46) 4 (8) 1 (2) 0 0
PF00084 Sushi Sushi domain (SCR repeat) 53 (191) 11 (42) 8 (45) 0 0
PF00090 Tsp_1 Thrombospondin type 1 domain 41 (66) 11 (23) 18 (47) 0 0
PF00092 Vwa von Willebrand factor type A domain 34 (58) 0 17 (19) 0 1
PF00093 Vwc von Willebrand factor type C domain 19 (28) 6 (11) 2 (5) 0 0
PF00094 Vwd von Willebrand factor type D domain 15 (35) 3 (7) 9 0 0

Protein interaction domains
PF00244 14-3-3 14-3-3 proteins 20 3 3 2 15
PF00023 Ank Ank repeat 145 (404) 72 (269) 75 (223) 12 (20) 66 (111)
PF00514 Armadillo_seg Armadillo/beta-catenin-like repeats 22 (56) 11 (38) 3 (11) 2 (10) 25 (67)
PF00168 C2 C2 domain 73 (101) 32 (44) 24 (35) 6 (9) 66 (90)
PF00027 cNMP_binding Cyclic nucleotide-binding domain 26 (31) 21 (33) 15 (20) 2 (3) 22
PF01556 DnaJ_C DnaJ C terminal region 12 9 5 3 19
PF00226 DnaJ DnaJ domain 44 34 33 20 93
PF00036 Efhand** EF hand 83 (151) 64 (117) 41 (86) 4 (11) 120 (328)
PF00611 FCH Fes/CIP4 homology domain 9 3 2 4 0
PF01846 FF FF domain 4 (11) 4 (10) 3 (16) 2 (5) 4 (8)
PF00498 FHA FHA domain 13 15 7 13 (14) 17
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myelin proteins result in severe demyelina-
tion, which is a pathological condition in
which the myelin is lost and the nerve con-
duction is severely impaired (130). Humans
have at least 10 genes belonging to four
different families involved in myelin produc-

tion (five myelin P0, three myelin proteolip-
id, myelin basic protein, and myelin-oligo-
dendrocyte glycoprotein, or MOG), and pos-
sibly more-remotely related members of the
MOG family. Flies have only a single myelin
proteolipid, and worms have none at all.

Intercellular and intracellular signaling
pathways in development and homeostasis.
Many protein families that have expanded in
humans relative to the invertebrates are in-
volved in signaling processes, particularly in
response to development and differentiation

Table 18 (Continued )

Accession
number

Domain name Domain description H F W Y A

PF00254 FKBP FKBP-type peptidyl-prolyl cis-trans isomerases 15 (20) 7 (8) 7 (13) 4 24 (29)
PF01590 GAF GAF domain 7 (8) 2 (4) 1 0 10
PF01344 Kelch Kelch motif 54 (157) 12 (48) 13 (41) 3 102 (178)
PF00560 LRR** Leucine Rich Repeat 25 (30) 24 (30) 7 (11) 1 15 (16)
PF00917 MATH MATH domain 11 5 88 (161) 1 61 (74)
PF00989 PAS PAS domain 18 (19) 9 (10) 6 1 13 (18)
PF00595 PDZ PDZ domain (Also known as DHR or GLGF) 96 (154) 60 (87) 46 (66) 2 5
PF00169 PH PH domain 193 (212) 72 (78) 65 (68) 24 23
PF01535 PPR** PPR repeat 5 3 (4) 0 1 474 (2485)
PF00536 SAM SAM domain (Sterile alpha motif) 29 (31) 15 8 3 6
PF01369 Sec7 Sec7 domain 13 5 5 5 9
PF00017 SH2 Src homology 2 (SH2) domain 87 (95) 33 (39) 44 (48) 1 3
PF00018 SH3 Src homology 3 (SH3) domain 143 (182) 55 (75) 46 (61) 23 (27) 4
PF01740 STAS STAS domain 5 1 6 2 13
PF00515 TPR** TPR domain 72 (131) 39 (101) 28 (54) 16 (31) 65 (124)
PF00400 WD40** WD40 domain 136 (305) 98 (226) 72 (153) 56 (121) 167 (344)
PF00397 WW WW domain 32 (53) 24 (39) 16 (24) 5 (8) 11 (15)
PF00569 ZZ ZZ-Zinc finger present in dystrophin, CBP/p300 10 (11) 13 10 2 10

Nuclear interaction domains
PF01754 Zf-A20 A20-like zinc finger 2 (8) 2 2 0 8
PF01388 ARID ARID DNA binding domain 11 6 4 2 7
PF01426 BAH BAH domain 8 (10) 7 (8) 4 (5) 5 21 (25)
PF00643 Zf-B_box** B-box zinc finger 32 (35) 1 2 0 0
PF00533 BRCT BRCA1 C Terminus (BRCT) domain 17 (28) 10 (18) 23 (35) 10 (16) 12 (16)
PF00439 Bromodomain Bromodomain 37 (48) 16 (22) 18 (26) 10 (15) 28
PF00651 BTB BTB/POZ domain 97 (98) 62 (64) 86 (91) 1 (2) 30 (31)
PF00145 DNA_methylase C-5 cytosine-specific DNA methylase 3 (4) 1 0 0 13 (15)
PF00385 Chromo chromo’ (CHRromatin Organization MOdifier)

domain
24 (27) 14 (15) 17 (18) 1 (2) 12

PF00125 Histone Core histone H2A/H2B/H3/H4 75 (81) 5 71 (73) 8 48
PF00134 Cyclin Cyclin 19 10 10 11 35
PF00270 DEAD DEAD/DEAH box helicase 63 (66) 48 (50) 55 (57) 50 (52) 84 (87)
PF01529 Zf-DHHC DHHC zinc finger domain 15 20 16 7 22
PF00646 F-box** F-box domain 16 15 309 (324) 9 165 (167)
PF00250 Fork_head Fork head domain 35 (36) 20 (21) 15 4 0
PF00320 GATA GATA zinc finger 11 (17) 5(6) 8 (10) 9 26
PF01585 G-patch G-patch domain 18 16 13 4 14 (15)
PF00010 HLH** Helix-loop-helix DNA-binding domain 60 (61) 44 24 4 39
PF00850 Hist_deacetyl Histone deacetylase family 12 5 (6) 8 (10) 5 10
PF00046 Homeobox Homeobox domain 160 (178) 100 (103) 82 (84) 6 66
PF01833 TIG IPT/TIG domain 29 (53) 11 (13) 5 (7) 2 1
PF02373 JmjC JmjC domain 10 4 6 4 7
PF02375 JmjN JmjN domain 7 4 2 3 7
PF00013 KH-domain KH domain 28 (67) 14 (32) 17 (46) 4 (14) 27 (61)
PF01352 KRAB KRAB box 204 (243) 0 0 0 0
PF00104 Hormone_rec Ligand-binding domain of nuclear hormone

receptor
47 17 142 (147) 0 0

PF00412 LIM LIM domain containing proteins 62 (129) 33 (83) 33 (79) 4 (7) 10 (16)
PF00917 MATH MATH domain 11 5 88 (161) 1 61 (74)
PF00249 Myb_DNA-binding Myb-like DNA-binding domain 32 (43) 18 (24) 17 (24) 15 (20) 243 (401)
PF02344 Myc-LZ Myc leucine zipper domain 1 0 0 0 0
PF01753 Zf-MYND MYND finger 14 14 9 1 7
PF00628 PHD PHD-finger 68 (86) 40 (53) 32 (44) 14 (15) 96 (105)
PF00157 Pou Pou domain—N-terminal to homeobox domain 15 5 4 0 0
PF02257 RFX_DNA_binding RFX DNA-binding domain 7 2 1 1 0
PF00076 Rrm RNA recognition motif (a.k.a. RRM, RBD, or RNP

domain)
224 (324) 127 (199) 94 (145) 43 (73) 232 (369)

PF02037 SAP SAP domain 15 8 5 5 6 (7)
PF00622 SPRY SPRY domain 44 (51) 10 (12) 5 (7) 3 6
PF01852 START START domain 10 2 6 0 23
PF00907 T-box T-box 17 (19) 8 22 0 0
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(Tables 18 and 19). They include secreted
hormones and growth factors, receptors, in-
tracellular signaling molecules, and transcrip-
tion factors.

Developmental signaling molecules that are
enriched in the human genome include growth
factors such as wnt, transforming growth fac-
tor–b (TGF-b), fibroblast growth factor (FGF),
nerve growth factor, platelet derived growth
factor (PDGF), and ephrins. These growth fac-
tors affect tissue differentiation and a wide
range of cellular processes involving actin-cy-
toskeletal and nuclear regulation. The corre-
sponding receptors of these developmental li-
gands are also expanded in humans. For exam-
ple, our analysis suggests at least 8 human
ephrin genes (2 in the fly, 4 in the worm) and 12
ephrin receptors (2 in the fly, 1 in the worm). In
the wnt signaling pathway, we find 18 wnt
family genes (6 in the fly, 5 in the worm) and
12 frizzled receptors (6 in the fly, 5 in the
worm). The Groucho family of transcriptional
corepressors downstream in the wnt pathway
are even more markedly expanded, with 13
predicted members in humans (2 in the fly, 1 in
the worm).

Extracellular adhesion molecules involved
in signaling are expanded in the human genome
(Tables 18 and 19). The interactions of several
of these adhesion domains with extracellular
matrix proteoglycans play a critical role in host
defense, morphogenesis, and tissue repair
(131). Consistent with the well-defined role of
heparan sulfate proteoglycans in modulating
these interactions (132), we observe an expan-
sion of the heparin sulfate sulfotransferases in
the human genome relative to worm and fly.
These sulfotransferases modulate tissue differ-
entiation (133). A similar expansion in humans
is noted in structural proteins that constitute the
actin-cytoskeletal architecture. Compared with
the fly and worm, we observe an explosive
expansion of the nebulin (35 domains per pro-
tein on average), aggrecan (12 domains per
protein on average), and plectin (5 domains per
protein on average) repeats in humans. These
repeats are present in proteins involved in mod-
ulating the actin-cytoskeleton with predominant
expression in neuronal, muscle, and vascular
tissues.

Comparison across the five sequenced eu-
karyotic organisms revealed several expand-
ed protein families and domains involved in
cytoplasmic signal transduction (Table 18).
In particular, signal transduction pathways
playing roles in developmental regulation and
acquired immunity were substantially en-
riched. There is a factor of 2 or greater ex-
pansion in humans in the Ras superfamily
GTPases and the GTPase activator and GTP
exchange factors associated with them. Al-
though there are about the same number of
tyrosine kinases in the human and C. elegans
genomes, in humans there is an increase in
the SH2, PTB, and ITAM domains involved
in phosphotyrosine signal transduction. Fur-
ther, there is a twofold expansion of phos-
phodiesterases in the human genome com-
pared with either the worm or fly genomes.

The downstream effectors of the intracellu-
lar signaling molecules include the transcription
factors that transduce developmental fates. Sig-
nificant expansions are noted in the ligand-
binding nuclear hormone receptor class of tran-
scription factors compared with the fly genome,
although not to the extent observed in the worm
(Tables 18 and 19). Perhaps the most striking
expansion in humans is in the C2H2 zinc finger
transcription factors. Pfam detects a total of
4500 C2H2 zinc finger domains in 564 human
proteins, compared with 771 in 234 fly proteins.
This means that there has been a dramatic
expansion not only in the number of C2H2
transcription factors, but also in the number of
these DNA-binding motifs per transcription
factor (8 on average in humans, 3.3 on average
in the fly, and 2.3 on average in the worm).
Furthermore, many of these transcription fac-
tors contain either the KRAB or SCAN do-
mains, which are not found in the fly or worm
genomes. These domains are involved in the
oligomerization of transcription factors and in-
crease the combinatorial partnering of these
factors. In general, most of the transcription
factor domains are shared between the three
animal genomes, but the reassortment of these
domains results in organism-specific transcrip-
tion factor families. The domain combinations
found in the human, fly, and worm include the
BTB with C2H2 in the fly and humans, and

homeodomains alone or in combination with
Pou and LIM domains in all of the animal
genomes. In plants, however, a different set of
transcription factors are expanded, namely, the
myb family, and a unique set that includes VP1
and AP2 domain–containing proteins (134).
The yeast genome has a paucity of transcription
factors compared with the multicellular eu-
karyotes, and its repertoire is limited to the
expansion of the yeast-specific C6 transcription
factor family involved in metabolic regulation.

While we have illustrated expansions in a
subset of signal transduction molecules in the
human genome compared with the other eu-
karyotic genomes, it should be noted that
most of the protein domains are highly con-
served. An interesting observation is that
worms and humans have approximately the
same number of both tyrosine kinases and
serine/threonine kinases (Table 19). It is im-
portant to note, however, that these are mere-
ly counts of the catalytic domain; the proteins
that contain these domains also display a
wide repertoire of interaction domains with
significant combinatorial diversity.

Hemostasis. Hemostasis is regulated pri-
marily by plasma proteases of the coagulation
pathway and by the interactions that occur be-
tween the vascular endothelium and platelets.
Consistent with known anatomical and physio-
logical differences between vertebrates and in-
vertebrates, extracellular adhesion domains that
constitute proteins integral to hemostasis are
expanded in the human relative to the fly and
worm (Tables 18 and 19). We note the evolu-
tion of domains such as FIMAC, FN1, FN2,
and C1q that mediate surface interactions be-
tween hematopoeitic cells and the vascular ma-
trix. In addition, there has been extensive re-
cruitment of more-ancient animal-specific do-
mains such as VWA, VWC, VWD, kringle,
and FN3 into multidomain proteins that are
involved in hemostatic regulation. Although we
do not find a large expansion in the total num-
ber of serine proteases, this enzymatic domain
has been specifically recruited into several of
these multidomain proteins for proteolytic reg-
ulation in the vascular compartment. These are
represented in plasma proteins that belong to
the kinin and complement pathways. There is a

Table 18 (Continued )

Accession
number

Domain name Domain description H F W Y A

PF02135 Zf-TAZ TAZ finger 2 (3) 1 (2) 6 (7) 0 10 (15)
PF01285 TEA TEA domain 4 1 1 1 0
PF02176 Zf-TRAF TRAF-type zinc finger 6 (9) 1 (3) 1 0 2
PF00352 TBP Transcription factor TFIID (or TATA-binding

protein, TBP)
2 (4) 4 (8) 2 (4) 1 (2) 2 (4)

PF00567 TUDOR TUDOR domain 9 (24) 9 (19) 4 (5) 0 2
PF00642 Zf-CCCH Zinc finger C-x8-C-x5-C-x3-H type (and similar) 17 (22) 6 (8) 22 (42) 3 (5) 31 (46)
PF00096 Zf-C2H2** ZInc finger, C2H2 type 564 (4500) 234 (771) 68 (155) 34 (56) 21 (24)
PF00097 Zf-C3HC4 Zinc finger, C3HC4 type (RING finger) 135 (137) 57 88 (89) 18 298 (304)
PF00098 Zf-CCHC Zinc knuckle 9 (17) 6 (10) 17 (33) 7 (13) 68 (91)
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significant expansion in two families of matrix
metalloproteases: ADAM (a disintegrin and
metalloprotease) and MMPs (matrix metallo-
proteases) (Table 19). Proteolysis of extracel-
lular matrix (ECM) proteins is critical for tissue
development and for tissue degradation in dis-
eases such as cancer, arthritis, Alzheimer’s dis-
ease, and a variety of inflammatory conditions
(135, 136). ADAMs are a family of integral
membrane proteins with a pivotal role in fibrin-
ogenolysis and modulating interactions be-
tween hematopoietic components and the
vascular matrix components. These proteins
have been shown to cleave matrix proteins,
and even signaling molecules: ADAM-17
converts tumor necrosis factor–a, and
ADAM-10 has been implicated in the Notch
signaling pathway (135). We have identified
19 members of the matrix metalloprotease
family, and a total of 51 members of the
ADAM and ADAM-TS families.

Apoptosis. Evolutionary conservation of
some of the apoptotic pathway components
across eukarya is consistent with its central
role in developmental regulation and as a
response to pathogens and stress signals. The
signal transduction pathways involved in pro-
grammed cell death, or apoptosis, are medi-
ated by interactions between well-character-
ized domains that include extracellular do-
mains, adaptor (protein-protein interaction)
domains, and those found in effector and
regulatory enzymes (137 ). We enumerated
the protein counts of central adaptor and ef-
fector enzyme domains that are found only in
the apoptotic pathways to provide an estimate
of divergence across eukarya and relative
expansion in the human genome when com-
pared with the fly and worm (Table 18).
Adaptor domains found in proteins restricted
only to apoptotic regulation such as the DED
domains are vertebrate-specific, whereas oth-
ers like BIR, CARD, and Bcl2 are represent-
ed in the fly and worm (although the number
of Bcl2 family members in humans is signif-
icantly expanded). Although plants and yeast
lack the caspases, caspase-like molecules,
namely the para- and meta-caspases, have
been reported in these organisms (138). Com-
pared with other animal genomes, the human
genome shows an expansion in the adaptor
and effector domain–containing proteins in-
volved in apoptosis, as well as in the pro-
teases involved in the cascade such as the
caspase and calpain families.

Expansions of other protein families.
Metabolic enzymes. There are fewer cyto-
chrome P450 genes in humans than in either
the fly or worm. Lipoxygenases (six in hu-
mans), on the other hand, appear to be specific
to the vertebrates and plants, whereas the lip-
oxygenase-activating proteins (four in humans)
may be vertebrate-specific. Lipoxygenases are
involved in arachidonic acid metabolism, and
they and their activators have been implicated

in diverse human pathology ranging from
allergic responses to cancers. One of the most
surprising human expansions, however, is in
the number of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) genes (46 in hu-
mans, 3 in the fly, and 4 in the worm). There
is, however, evidence for many retrotrans-

posed GAPDH pseudogenes (139), which
may account for this apparent expansion.
However, it is interesting that GAPDH, long
known as a conserved enzyme involved in
basic metabolism found across all phyla from
bacteria to humans, has recently been shown
to have other functions. It has a second cat-

Table 19. Number of proteins assigned to selected Panther families or subfamilies in H. sapiens (H), D.
melanogaster (F), C. elegans (W), S. cerevisiae (Y), and A. thaliana (A).

Panther family/subfamily* H F W Y A

Neural structure, function, development

Ependymin 1 0 0 0 0
Ion channels

Acetylcholine receptor 17 12 56 0 0
Amiloride-sensitive/degenerin 11 24 27 0 0
CNG/EAG 22 9 9 0 30
IRK 16 3 3 0 0
ITP/ryanodine 10 2 4 0 0
Neurotransmitter-gated 61 51 59 0 19
P2X purinoceptor 10 0 0 0 0
TASK 12 12 48 1 5
Transient receptor 15 3 3 1 0
Voltage-gated Ca21 alpha 22 4 8 2 2
Voltage-gated Ca21 alpha-2 10 3 2 0 0
Voltage-gated Ca21 beta 5 2 2 0 0
Voltage-gated Ca21 gamma 1 0 0 0 0
Voltage-gated K1 alpha 33 5 11 0 0
Voltage-gated KQT 6 2 3 0 0
Voltage-gated Na1 11 4 4 9 1

Myelin basic protein 1 0 0 0 0
Myelin PO 5 0 0 0 0
Myelin proteolipid 3 1 0 0 0
Myelin-oligodendrocyte glycoprotein 1 0 0 0 0
Neuropilin 2 0 0 0 0
Plexin 9 2 0 0 0
Semaphorin 22 6 2 0 0
Synaptotagmin 10 3 3 0 0

Immune response
Defensin 3 0 0 0 0
Cytokine† 86 14 1 0 0

GCSF 1 0 0 0 0
GMCSF 1 0 0 0 0
Intercrine alpha 15 0 0 0 0
Intercrine beta 5 0 0 0 0
Inteferon 8 0 0 0 0
Interleukin 26 1 1 0 0
Leukemia inhibitory factor 1 0 0 0 0
MCSF 1 0 0 0 0
Peptidoglycan recognition protein 2 13 0 0 0
Pre-B cell enhancing factor 1 0 0 0 0
Small inducible cytokine A 14 0 0 0 0
Sl cytokine 2 0 0 0 0
TNF 9 0 0 0 0

Cytokine receptor† 62 1 0 0 0
Bradykinin/C-C chemokine receptor 7 0 0 0 0
Fl cytokine receptor 2 0 0 0 0
Interferon receptor 3 0 0 0 0
Interleukin receptor 32 0 0 0 0
Leukocyte tyrosine kinase

receptor
3 0 0 0 0

MCSF receptor 1 0 0 0 0
TNF receptor 3 0 0 0 0

Immunoglobulin receptor† 59 0 0 0 0
T-cell receptor alpha chain 16 0 0 0 0
T-cell receptor beta chain 15 0 0 0 0
T-cell receptor gamma chain 1 0 0 0 0
T-cell receptor delta chain 1 0 0 0 0
Immunoglobulin FC receptor 8 0 0 0 0
Killer cell receptor 16 0 0 0 0
Polymeric-immunoglobulin receptor 4 0 0 0 0
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alytic activity, as a uracil DNA glycosylase
(140) and functions as a cell cycle regulator
(141) and has even been implicated in apo-
ptosis (142).

Translation. Another striking set of hu-
man expansions has occurred in certain fam-
ilies involved in the translational machinery.
We identified 28 different ribosomal subunits
that each have at least 10 copies in the ge-
nome; on average, for all ribosomal proteins
there is about an 8- to 10-fold expansion in
the number of genes relative to either the
worm or fly. Retrotransposed pseudogenes

may account for many of these expansions
[see the discussion above and (143)]. Recent
evidence suggests that a number of ribosomal
proteins have secondary functions indepen-
dent of their involvement in protein biosyn-
thesis; for example, L13a and the related L7
subunits (36 copies in humans) have been
shown to induce apoptosis (144 ).

There is also a four- to fivefold expansion
in the elongation factor 1-alpha family
(eEF1A; 56 human genes). Many of these
expansions likely represent intronless para-
logs that have presumably arisen from retro-

transposition, and again there is evidence that
many of these may be pseudogenes (145).
However, a second form (eEF1A2) of this
factor has been identied with tissue-specific
expression in skeletal muscle and a comple-
mentary expression pattern to the ubiquitous-
ly expressed eEF1A (146 ).

Ribonucleoproteins. Alternative splicing
results in multiple transcripts from a single
gene, and can therefore generate additional
diversity in an organism’s protein comple-
ment. We have identified 269 genes for ri-
bonucleoproteins. This represents over 2.5
times the number of ribonucleoprotein genes
in the worm, two times that of the fly, and
about the same as the 265 identified in the
Arabidopsis genome. Whether the diversity
of ribonucleoprotein genes in humans con-
tributes to gene regulation at either the splic-
ing or translational level is unknown.

Posttranslational modifications. In this
set of processes, the most prominent expan-
sion is the transglutaminases, calcium-depen-
dent enzymes that catalyze the cross-linking
of proteins in cellular processes such as he-
mostasis and apoptosis (147 ). The vitamin
K–dependent gamma carboxylase gene prod-
uct acts on the GLA domain (missing in the
fly and worm) found in coagulation factors,
osteocalcin, and matrix GLA protein (148).
Tyrosylprotein sulfotransferases participate
in the posttranslational modification of pro-
teins involved in inflammation and hemosta-
sis, including coagulation factors and chemo-
kine receptors (149). Although there is no
significant numerical increase in the counts
for domains involved in nuclear protein mod-
ification, there are a number of domain ar-
rangements in the predicted human proteins
that are not found in the other currently se-
quenced genomes. These include the tandem
association of two histone deacetylase do-
mains in HD6 with a ubiquitin finger domain,
a feature lacking in the fly genome. An ad-
ditional example is the co-occurrence of im-
portant nuclear regulatory enzyme PARP
(poly-ADP ribosyl transferase) domain fused
to protein-interaction domains—BRCT and
VWA in humans.

Concluding remarks. There are several
possible explanations for the differences in
phenotypic complexity observed in humans
when compared to the fly and worm. Some of
these relate to the prominent differences in
the immune system, hemostasis, neuronal,
vascular, and cytoskeletal complexity. The
finding that the human genome contains few-
er genes than previously predicted might be
compensated for by combinatorial diversity
generated at the levels of protein architecture,
transcriptional and translational control, post-
translational modification of proteins, or
posttranscriptional regulation. Extensive do-
main shuffling to increase or alter combina-
torial diversity can provide an exponential

Table 19 (Continued )

Panther family/subfamily* H F W Y A

MHC class I 22 0 0 0 0
MHC class II 20 0 0 0 0
Other immunoglobulin† 114 0 0 0 0
Toll receptor–related 10 6 0 0 0

Developmental and homeostatic regulators
Signaling molecules†

Calcitonin 3 0 0 0 0
Ephrin 8 2 4 0 0
FGF 24 1 1 0 0
Glucagon 4 0 0 0 0
Glycoprotein hormone beta chain 2 0 0 0 0
Insulin 1 0 0 0 0
Insulin-like hormone 3 0 0 0 0
Nerve growth factor 3 0 0 0 0
Neuregulin/heregulin 6 0 0 0 0
neuropeptide Y 4 0 0 0 0
PDGF 1 1 0 0 0
Relaxin 3 0 0 0 0
Stannocalcin 2 0 0 0 0
Thymopoeitin 2 0 1 0 0
Thyomosin beta 4 2 0 0 0
TGF-b 29 6 4 0 0
VEGF 4 0 0 0 0
Wnt 18 6 5 0 0

Receptors†
Ephrin receptor 12 2 1 0 0
FGF receptor 4 4 0 0 0
Frizzled receptor 12 6 5 0 0
Parathyroid hormone receptor 2 0 0 0 0
VEGF receptor 5 0 0 0 0
BDNF/NT-3 nerve growth factor

receptor
4 0 0 0 0

Kinases and phosphatases
Dual-specificity protein phosphatase 29 8 10 4 11
S/T and dual-specificity protein

kinase† 395 198 315 114 1102
S/T protein phosphatase 15 19 51 13 29
Y protein kinase† 106 47 100 5 16
Y protein phosphatase 56 22 95 5 6

Signal transduction
ARF family 55 29 27 12 45
Cyclic nucleotide phosphodiesterase 25 8 6 1 0
G protein-coupled receptors†‡ 616 146 284 0 1
G-protein alpha 27 10 22 2 5
G-protein beta 5 3 2 1 1
G-protein gamma 13 2 2 0 0
Ras superfamily 141 64 62 26 86
G-protein modulators†

ARF GTPase-activating 20 8 9 5 15
Neurofibromin 7 2 0 2 0
Ras GTPase-activating 9 3 8 1 0
Tuberin 7 3 2 0 0
Vav proto-oncogene family 35 15 13 3 0
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increase in the ability to mediate protein-
protein interactions without dramatically in-
creasing the absolute size of the protein com-
plement (150). Evolution of apparently new
(from the perspective of sequence analysis)
protein domains and increasing regulatory
complexity by domain accretion both quanti-
tatively and qualitatively (recruitment of nov-
el domains with preexisting ones) are two
features that we observe in humans. Perhaps
the best illustration of this trend is the C2H2
zinc finger–containing transcription factors,
where we see expansion in the number of
domains per protein, together with verte-
brate-specific domains such as KRAB and
SCAN. Recent reports on the prominent use
of internal ribosomal entry sites in the human
genome to regulate translation of specific
classes of proteins suggests that this is an area
that needs further research to identify the full
extent of this process in the human genome
(151). At the posttranslational level, although
we provide examples of expansions of some
protein families involved in these modifica-
tions, further experimental evidence is re-
quired to evaluate whether this is correlated
with increased complexity in protein process-
ing. Posttranscriptional processing and the
extent of isoform generation in the human
remain to be cataloged in their entirety. Given
the conserved nature of the spliceosomal ma-
chinery, further analysis will be required to
dissect regulation at this level.

8 Conclusions

8.1 The whole-genome sequencing
approach versus BAC by BAC
Experience in applying the whole-genome
shotgun sequencing approach to a diverse
group of organisms with a wide range of
genome sizes and repeat content allows us to
assess its strengths and weaknesses. With the
success of the method for a large number of
microbial genomes, Drosophila, and now the
human, there can be no doubt concerning the
utility of this method. The large number of
microbial genomes that have been sequenced
by this method (15, 80, 152) demonstrate that
megabase-sized genomes can be sequenced
efficiently without any input other that the de
novo mate-paired sequences. With more
complex genomes like those of Drosophila or
human, map information, in the form of well-
ordered markers, has been critical for long-
range ordering of scaffolds. For joining scaf-
folds into chromosomes, the quality of the
map (in terms of the order of the markers) is
more important than the number of markers
per se. Although this mapping could have
been performed concurrently with sequenc-
ing, the prior existence of mapping data was
beneficial. During the sequencing of the A.
thaliana genome, sequencing of individual
BAC clones permitted extension of the se-

Table 19 (Continued )

Panther family/subfamily* H F W Y A

Transcription factors/chromatin organization

C2H2 zinc finger–containing† 607 232 79 28 8
COE 7 1 1 0 0
CREB 7 1 2 0 0
ETS-related 25 8 10 0 0
Forkhead-related 34 19 15 4 0
FOS 8 2 1 0 0
Groucho 13 2 1 0 0
Histone H1 5 0 1 0 0
Histone H2A 24 1 17 3 13
Histone H2B 21 1 17 2 12
Histone H3 28 2 24 2 16
Histone H4 9 1 16 1 8
Homeotic† 168 104 74 4 78

ABD-B 5 0 0 0 0
Bithoraxoid 1 8 1 0 0
Iroquois class 7 3 1 0 0
Distal-less 5 2 1 0 0
Engrailed 2 2 1 0 0
LIM-containing 17 8 3 0 0
MEIS/KNOX class 9 4 4 2 26
NK-3/NK-2 class 9 4 5 0 0
Paired box 38 28 23 0 2
Six 5 3 4 0 0

Leucine zipper 6 0 0 0 0
Nuclear hormone receptor† 59 25 183 1 4
Pou-related 15 5 4 1 0
Runt-related 3 4 2 0 0

ECM adhesion

Cadherin 113 17 16 0 0
Claudin 20 0 0 0 0
Complement receptor-related 22 8 6 0 0
Connexin 14 0 0 0 0
Galectin 12 5 22 0 0
Glypican 13 2 1 0 0
ICAM 6 0 0 0 0
Integrin alpha 24 7 4 0 1
Integrin beta 9 2 2 0 0
LDL receptor family 26 19 20 0 2
Proteoglycans 22 9 7 0 5

Apoptosis

Bcl-2 12 1 0 0 0
Calpain 22 4 11 1 3
Calpain inhibitor 4 0 0 0 1
Caspase 13 7 3 0 0

Hemostasis

ADAM/ADAMTS 51 9 12 0 0
Fibronectin 3 0 0 0 0
Globin 10 2 3 0 3
Matrix metalloprotease 19 2 7 0 3
Serum amyloid A 4 0 0 0 0
Serum amyloid P (subfamily of

Pentaxin)
2 0 0 0 0

Serum paraoxonase/arylesterase 4 0 3 0 0
Serum albumin 4 0 0 0 0
Transglutaminase 10 1 0 0 0

Other enzymes

Cytochrome p450 60 89 83 3 256
GAPDH 46 3 4 3 8
Heparan sulfotransferase 11 4 2 0 0

Splicing and translation

EF-1alpha 56 13 10 6 13
Ribonucleoproteins† 269 135 104 60 265
Ribosomal proteins† 812 111 80 117 256

*The table lists Panther families or subfamilies relevant to the text that either (i) are not specifically represented by Pfam
(Table 18) or (ii) differ in counts from the corresponding Pfam models. †This class represents a number of different
families in the same Panther molecular function subcategory. ‡This count includes only rhodopsin-class, secretin-
class, and metabotropic glutamate-class GPCRs.
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quence well into centromeric regions and al-
lowed high-quality resolution of complex re-
peat regions. Likewise, in Drosophila, the
BAC physical map was most useful in re-
gions near the highly repetitive centromeres
and telomeres. WGA has been found to de-
liver excellent-quality reconstructions of the
unique regions of the genome. As the genome
size, and more importantly the repetitive con-
tent, increases, the WGA approach delivers
less of the repetitive sequence.

The cost and overall efficiency of clone-by-
clone approaches makes them difficult to justify
as a stand-alone strategy for future large-scale
genome-sequencing projects. Specific applica-
tions of BAC-based or other clone mapping and
sequencing strategies to resolve ambiguities in
sequence assembly that cannot be efficiently
resolved with computational approaches alone
are clearly worth exploring. Hybrid approaches
to whole-genome sequencing will only work if
there is sufficient coverage in both the whole-
genome shotgun phase and the BAC clone se-
quencing phase. Our experience with human
genome assembly suggests that this will require
at least 33 coverage of both whole-genome and
BAC shotgun sequence data.

8.2 The low gene number in humans
We have sequenced and assembled ;95% of
the euchromatic sequence of H. sapiens and
used a new automated gene prediction meth-
od to produce a preliminary catalog of the
human genes. This has provided a major sur-
prise: We have found far fewer genes (26,000
to 38,000) than the earlier molecular pre-
dictions (50,000 to over 140,000). Whatever
the reasons for this current disparity, only
detailed annotation, comparative genomics
(particularly using the Mus musculus ge-
nome), and careful molecular dissection of
complex phenotypes will clarify this critical
issue of the basic “parts list” of our genome.
Certainly, the analysis is still incomplete and
considerable refinement will occur in the
years to come as the precise structure of each
transcription unit is evaluated. A good place
to start is to determine why the gene esti-
mates derived from EST data are so discor-
dant with our predictions. It is likely that the
following contribute to an inflated gene num-
ber derived from ESTs: the variable lengths
of 39- and 59-untranslated leaders and trailers;
the little-understood vagaries of RNA pro-
cessing that often leave intronic regions in an
unspliced condition; the finding that nearly
40% of human genes are alternatively spliced
(153); and finally, the unsolved technical
problems in EST library construction where
contamination from heterogeneous nuclear
RNA and genomic DNA are not uncommon.
Of course, it is possible that there are genes
that remain unpredicted owing to the absence
of EST or protein data to support them, al-
though our use of mouse genome data for

predicting genes should limit this number. As
was true at the beginning of genome sequenc-
ing, ultimately it will be necessary to measure
mRNA in specific cell types to demonstrate
the presence of a gene.

J. B. S. Haldane speculated in 1937 that a
population of organisms might have to pay a
price for the number of genes it can possibly
carry. He theorized that when the number of
genes becomes too large, each zygote carries
so many new deleterious mutations that the
population simply cannot maintain itself. On
the basis of this premise, and on the basis of
available mutation rates and x-ray–induced
mutations at specific loci, Muller, in 1967
(154 ), calculated that the mammalian ge-
nome would contain a maximum of not much
more than 30,000 genes (155). An estimate of
30,000 gene loci for humans was also arrived
at by Crow and Kimura (156 ). Muller’s esti-
mate for D. melanogaster was 10,000 genes,
compared to 13,000 derived by annotation of
the fly genome (26, 27 ). These arguments for
the theoretical maximum gene number were
based on simplified ideas of genetic load—
that all genes have a certain low rate of
mutation to a deleterious state. However, it is
clear that many mouse, fly, worm, and yeast
knockout mutations lead to almost no dis-
cernible phenotypic perturbations.

The modest number of human genes
means that we must look elsewhere for the
mechanisms that generate the complexities
inherent in human development and the so-
phisticated signaling systems that maintain
homeostasis. There are a large number of
ways in which the functions of individual
genes and gene products are regulated. The
degree of “openness” of chromatin structure
and hence transcriptional activity is regulated
by protein complexes that involve histone
and DNA enzymatic modifications. We enu-
merate many of the proteins that are likely
involved in nuclear regulation in Table 19.
The location, timing, and quantity of tran-
scription are intimately linked to nuclear sig-
nal transduction events as well as by the
tissue-specific expression of many of these
proteins. Equally important are regulatory
DNA elements that include insulators, re-
peats, and endogenous viruses (157 ); meth-
ylation of CpG islands in imprinting (158);
and promoter-enhancer and intronic regions
that modulate transcription. The spliceosomal
machinery consists of multisubunit proteins
(Table 19) as well as structural and catalytic
RNA elements (159) that regulate transcript
structure through alternative start and termi-
nation sites and splicing. Hence, there is a
need to study different classes of RNA mol-
ecules (160) such as small nucleolar RNAs,
antisense riboregulator RNA, RNA involved
in X-dosage compensation, and other struc-
tural RNAs to appreciate their precise role in
regulating gene expression. The phenomenon

of RNA editing in which coding changes
occur directly at the level of mRNA is of
clinical and biological relevance (161). Final-
ly, examples of translational control include
internal ribosomal entry sites that are found
in proteins involved in cell cycle regulation
and apoptosis (162). At the protein level,
minor alterations in the nature of protein-
protein interactions, protein modifications,
and localization can have dramatic effects on
cellular physiology (163). This dynamic sys-
tem therefore has many ways to modulate
activity, which suggests that definition of
complex systems by analysis of single genes
is unlikely to be entirely successful.

In situ studies have shown that the human
genome is asymmetrically populated with
G1C content, CpG islands, and genes (68).
However, the genes are not distributed quite
as unequally as had been predicted (Table 9)
(69). The most G1C-rich fraction of the ge-
nome, H3 isochores, constitute more of the
genome than previously thought (about 9%),
and are the most gene-dense fraction, but
contain only 25% of the genes, rather than the
predicted ;40%. The low G1C L isochores
make up 65% of the genome, and 48% of the
genes. This inhomogeneity, the net result of
millions of years of mammalian gene dupli-
cation, has been described as the “desertifi-
cation” of the vertebrate genome (71). Why
are there clustered regions of high and low
gene density, and are these accidents of his-
tory or driven by selection and evolution? If
these deserts are dispensable, it ought to be
possible to find mammalian genomes that are
far smaller in size than the human genome.
Indeed, many species of bats have genome
sizes that are much smaller than that of hu-
mans; for example, Miniopterus, a species of
Italian bat, has a genome size that is only
50% that of humans (164 ). Similarly, Mun-
tiacus, a species of Asian barking deer, has a
genome size that is ;70% that of humans.

8.3 Human DNA sequence variation
and its distribution across the genome
This is the first eukaryotic genome in which a
nearly uniform ascertainment of polymorphism
has been completed. Although we have identi-
fied and mapped more than 3 million SNPs, this
by no means implies that the task of finding and
cataloging SNPs is complete. These represent
only a fraction of the SNPs present in the
human population as a whole. Nevertheless,
this first glimpse at genome-wide variation has
revealed strong inhomogeneities in the distribu-
tion of SNPs across the genome. Polymorphism
in DNA carries with it a snapshot of the past
operation of population genetic forces, includ-
ing mutation, migration, selection, and genetic
drift. The availability of a dense array of SNPs
will allow questions related to each of these
factors to be addressed on a genome-wide basis.
SNP studies can establish the range of haplo-
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types present in subjects of different ethnogeo-
graphic origins, providing insights into popula-
tion history and migration patterns. Although
such studies have suggested that modern human
lineages derive from Africa, many important
questions regarding human origins remain un-
answered, and more analyses using detailed
SNP maps will be needed to settle these con-
troversies. In addition to providing evidence for
population expansions, migration, and admix-
ture, SNPs can serve as markers for the extent
of evolutionary constraint acting on particular
genes. The correlation between patterns of in-
traspecies and interspecies genetic variation
may prove to be especially informative to iden-
tify sites of reduced genetic diversity that may
mark loci where sequence variations are not
tolerated.

The remarkable heterogeneity in SNP
density implies that there are a variety of
forces acting on polymorphism—sparse re-
gions may have lower SNP density because
the mutation rate is lower, because most of
those regions have a lower fraction of muta-
tions that are tolerated, or because recent
strong selection in favor of a newly arisen
allele “swept” the linked variation out of the
population (165). The effect of random ge-
netic drift also varies widely across the ge-
nome. The nonrecombining portion of the Y
chromosome faces the strongest pressure
from random drift because there are roughly
one-quarter as many Y chromosomes in the
population as there are autosomal chromo-
somes, and the level of polymorphism on the
Y is correspondingly less. Similarly, the X
chromosome has a smaller effective popu-
lation size than the autosomes, and its nu-
cleotide diversity is also reduced. But even
across a single autosome, the effective pop-
ulation size can vary because the density of
deleterious mutations may vary. Regions of
high density of deleterious mutations will
see a greater rate of elimination by selec-
tion, and the effective population size will
be smaller (166 ). As a result, the density of
even completely neutral SNPs will be lower
in such regions. There is a large literature
on the association between SNP density
and local recombination rates in Drosoph-
ila, and it remains an important task to
assess the strength of this association in the
human genome, because of its impact on
the design of local SNP densities for dis-
ease-association studies. It also remains an
important task to validate SNPs on a
genomic scale in order to assess the degree
of heterogeneity among geographic and
ethnic populations.

8.4 Genome complexity
We will soon be in a position to move away
from the cataloging of individual compo-
nents of the system, and beyond the sim-
plistic notions of “this binds to that, which

then docks on this, and then the complex
moves there. . . .” (167 ) to the exciting area
of network perturbations, nonlinear re-
sponses and thresholds, and their pivotal
role in human diseases.

The enumeration of other “parts lists” re-
veals that in organisms with complex nervous
systems, neither gene number, neuron number,
nor number of cell types correlates in any
meaningful manner with even simplistic mea-
sures of structural or behavioral complexity.
Nor would they be expected to; this is the realm
of nonlinearities and epigenesis (168). The 520
million neurons of the common octopus exceed
the neuronal number in the brain of a mouse by
an order of magnitude. It is apparent from a
comparison of genomic data on the mouse and
human, and from comparative mammalian neu-
roanatomy (169), that the morphological and
behavioral diversity found in mammals is un-
derpinned by a similar gene repertoire and sim-
ilar neuroanatomies. For example, when one
compares a pygmy marmoset (which is only 4
inches tall and weighs about 6 ounces) to a
chimpanzee, the brain volume of this minute
primate is found to be only about 1.5 cm3, two
orders of magnitude less than that of a chimp
and three orders less than that of humans. Yet
the neuroanatomies of all three brains are strik-
ingly similar, and the behavioral characteristics
of the pygmy marmoset are little different from
those of chimpanzees. Between humans and
chimpanzees, the gene number, gene structures
and functions, chromosomal and genomic or-
ganizations, and cell types and neuroanatomies
are almost indistinguishable, yet the develop-
mental modifications that predisposed human
lineages to cortical expansion and development
of the larynx, giving rise to language, culminat-
ed in a massive singularity that by even the
simplest of criteria made humans more com-
plex in a behavioral sense.

Simple examination of the number of neu-
rons, cell types, or genes or of the genome
size does not alone account for the differenc-
es in complexity that we observe. Rather, it is
the interactions within and among these sets
that result in such great variation. In addition,
it is possible that there are “special cases” of
regulatory gene networks that have a dispro-
portionate effect on the overall system. We
have presented several examples of “regula-
tory genes” that are significantly increased in
the human genome compared with the fly and
worm. These include extracellular ligands
and their cognate receptors (e.g., wnt, friz-
zled, TGF-b, ephrins, and connexins), as well
as nuclear regulators (e.g., the KRAB and
homeodomain transcription factor families),
where a few proteins control broad develop-
mental processes. The answers to these
“complexities” perhaps lie in these expanded
gene families and differences in the regulato-
ry control of ancient genes, proteins, path-
ways, and cells.

8.5 Beyond single components
While few would disagree with the intuitive
conclusion that Einstein’s brain was more
complex than that of Drosophila, closer com-
parisons such as whether the set of predicted
human proteins is more complex than the
protein set of Drosophila, and if so, to what
degree, are not straightforward, since protein,
protein domain, or protein-protein interaction
measures do not capture context-dependent
interactions that underpin the dynamics un-
derlying phenotype.

Currently, there are more than 30 different
mathematical descriptions of complexity (170).
However, we have yet to understand the math-
ematical dependency relating the number of
genes with organism complexity. One pragmat-
ic approach to the analysis of biological sys-
tems, which are composed of nonidentical ele-
ments (proteins, protein complexes, interacting
cell types, and interacting neuronal popula-
tions), is through graph theory (171). The ele-
ments of the system can be represented by the
vertices of complex topographies, with the edg-
es representing the interactions between them.
Examination of large networks reveals that they
can self-organize, but more important, they can
be particularly robust. This robustness is not
due to redundancy, but is a property of inho-
mogeneously wired networks. The error toler-
ance of such networks comes with a price; they
are vulnerable to the selection or removal of a
few nodes that contribute disproportionately to
network stability. Gene knockouts provide an
illustration. Some knockouts may have minor
effects, whereas others have catastrophic effects
on the system. In the case of vimentin, a sup-
posedly critical component of the cytoplasmic
intermediate filament network of mammals, the
knockout of the gene in mice reveals them to be
reproductively normal, with no obvious pheno-
typic effects (172), and yet the usually conspic-
uous vimentin network is completely absent.
On the other hand, ;30% of knockouts in
Drosophila and mice correspond to critical
nodes whose reduction in gene product, or total
elimination, causes the network to crash most
of the time, although even in some of these
cases, phenotypic normalcy ensues, given the
appropriate genetic background. Thus, there are
no “good” genes or “bad” genes, but only net-
works that exist at various levels and at differ-
ent connectivities, and at different states of
sensitivity to perturbation. Sophisticated math-
ematical analysis needs to be constantly evalu-
ated against hard biological data sets that spe-
cifically address network dynamics. Nowhere is
this more critical than in attempts to come to
grips with “complexity,” particularly because
deconvoluting and correcting complex net-
works that have undergone perturbation, and
have resulted in human diseases, is the greatest
significant challenge now facing us.

It has been predicted for the last 15 years
that complete sequencing of the human ge-
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nome would open up new strategies for hu-
man biological research and would have a
major impact on medicine, and through med-
icine and public health, on society. Effects on
biomedical research are already being felt.
This assembly of the human genome se-
quence is but a first, hesitant step on a long
and exciting journey toward understanding
the role of the genome in human biology. It
has been possible only because of innova-
tions in instrumentation and software that
have allowed automation of almost every step
of the process from DNA preparation to an-
notation. The next steps are clear: We must
define the complexity that ensues when this
relatively modest set of about 30,000 genes is
expressed. The sequence provides the frame-
work upon which all the genetics, biochem-
istry, physiology, and ultimately phenotype
depend. It provides the boundaries for scien-
tific inquiry. The sequence is only the first
level of understanding of the genome. All
genes and their control elements must be
identified; their functions, in concert as well
as in isolation, defined; their sequence varia-
tion worldwide described; and the relation
between genome variation and specific phe-
notypic characteristics determined. Now we
know what we have to explain.

Another paramount challenge awaits:
public discussion of this information and its
potential for improvement of personal health.
Many diverse sources of data have shown
that any two individuals are more than 99.9%
identical in sequence, which means that all
the glorious differences among individuals in
our species that can be attributed to genes
falls in a mere 0.1% of the sequence. There
are two fallacies to be avoided: determinism,
the idea that all characteristics of the person
are “hard-wired” by the genome; and reduc-
tionism, the view that with complete knowl-
edge of the human genome sequence, it is
only a matter of time before our understand-
ing of gene functions and interactions will
provide a complete causal description of hu-
man variability. The real challenge of human
biology, beyond the task of finding out how
genes orchestrate the construction and main-
tenance of the miraculous mechanism of our
bodies, will lie ahead as we seek to explain
how our minds have come to organize
thoughts sufficiently well to investigate our
own existence.
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ERRATUM

C O R R E C T I O N S A N D C L A R I F I C A T I O N S

RREPOREPORTSTS: “The sequence of the human genome” by J. C. Venter et al.

(16 Feb. 2001, p. 1304). In Table 10, the last column under the head-

ing “Gene prediction” should have read “Total (Otto + de novo/2×).”

This section of the table with the corrected column heading is

shown here. The asterisk indicates that the chromosomal assignment

is unknown.

In the References and Notes section, the authors for reference 176

should have read “A. Krogh et al.”; the journal name in reference 177

should have been “Proc. Intell. Syst. Mol. Biol.”; and in note 181, the

acknowledgement list should have included after G. Edwards the

names L. Foster, D. Bhandari, P. Davies, T. Safford, and J. Schira.

Gene prediction*

Otto
De

novo/
any

De
novo/

2�

Total
(Otto
� de
novo/
any)

Total
(Otto
� de
novo/
    )

1,743 1,710 710 3,453 2,453
1,183 1,771 633 2,954 1,816
1,013 1,414 598 2,427 1,611

696 1,165 449 1,861 1,145
892 1,244 474 2,136 1,366
943 1,314 524 2,257 1,467
759 1,072 460 1,831 1,219
583 977 357 1,560 940
689 848 329 1,537 1,018
685 968 342 1,653 1,027

1,051 1,134 535 2,185 1,586
925 936 417 1,861 1,342
341 691 241 1,032 582
583 700 290 1,283 873
558 640 246 1,198 804
748 673 247 1,421 995
897 648 313 1,545 1,210
283 543 189 826 472

1,141 534 268 1,675 1,409
517 469 180 986 697
184 265 102 449 286
494 341 147 835 641
605 860 387 1,465 992

55 155 49 210 104
196 278 132 474 328

17,764 21,350 8,619 39,114 26,383
714 812 333 1,526 1,047
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