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Hematopoietic Cytokines Can Instruct
Lineage Choice
Michael A. Rieger, Philipp S. Hoppe, Benjamin M. Smejkal,
Andrea C. Eitelhuber, Timm Schroeder*

The constant regeneration of the blood system during hematopoiesis requires tightly controlled
lineage decisions of hematopoietic progenitor cells (HPCs). Because of technical limitations,
differentiation of individual HPCs could not previously be analyzed continuously. It was therefore
disputed whether cell-extrinsic cytokines can instruct HPC lineage choice or only allow survival of
cells that are already lineage-restricted. Here, we used bioimaging approaches that allow the
continuous long-term observation of individual differentiating mouse HPCs. We demonstrate that
the physiological cytokines, macrophage colony-stimulating factor and granulocyte colony-
stimulating factor, can instruct hematopoietic lineage choice.

Allblood cells are generated from progen-
itor cells with more than one lineage
potential (hematopoietic progenitor cells,

HPCs). Hematopoiesis depends on tightly
controlled lineage choice. Cytokines are neces-
sary and sufficient for the production of specific
mature blood cell types (1). However, despite
decades of research, it is disputed whether cyto-
kines instruct HPCs to differentiate into a spe-
cific lineage (2). Alternatively, cytokines may
simply allow the survival or proliferation of cells
that had already independently decided for this
lineage. The cytokines’ functionwould then only be
to select the right cell types from a pool of already
lineage-restricted cells (3). Cell-intrinsic transcrip-
tion factors (4–7) and activation of ectopically
expressed cytokine receptors (8–10) were shown
to instruct lineage decisions. However, because
of technical limitations, the instructive action of
cytokines acting physiologically on unmanipu-
lated HPCs could not be demonstrated (1, 11). As
illustrated in fig. S1 (12), the discontinuous
analysis of HPCs does not allow conclusive
answers (13): In order to exclude the selective
model, the exact kinship, lineage commitment,
and cell death of all individual cells in HPC
colonies must be identified (14, 15). Prior analy-

ses had not continuously followed all individual
cells in constantly mixing HPC cultures long
enough and with sufficient resolution. The se-
lective model is currently favored in the literature
(11, 16).

Using bioimaging approaches that allowed
continuous long-term observation at the single-
cell level (17) (fig. S2 and movies S1 to S4),
we analyzed cultures of murine granulocyte-
macrophage progenitors (GMPs) (18) (fig. S3)
in the presence of only macrophage- or granu-
locyte colony-stimulating factor (M- or G-CSF).
Single-cell tracking showed that GMPs function-
ally respond to both cytokines with high cloning
efficiency (figs. S4 and S5). Culture in onlyM- or
G-CSF leads almost exclusively to mature mono-
cytic (M) or neutrophil granulocytic (G) cells,

respectively (fig. S6). We utilized LysM::GFP
mice (19), expressing enhanced green fluorescent
protein (GFP) from the lysozymeM gene locus
as an early molecular reporter for unilineage
commitment. Whereas only extremely weak
LysozymeM::GFP expression (LysM::GFP–) is
found in undifferentiated GMPs, LysM::GFP
is drastically up-regulated (LysM::GFP+) upon
differentiation (19–21) (figs. S2B and S7 to S9
and movie S5). LysM::GFP+ cells have lost their
colony-forming potential (Fig. 1, A and B, and
fig. S9) and are unilineage-restricted to either the
M or G lineage (Fig. 1, A and C).

This approach allows detection of cell death
and unilineage commitment of all cells in GMP
cultures. We continuously observed hundreds of
GMPs and all of their progeny throughout devel-
opment into only M- or G-committed cells in the
presence of onlyM- or G-CSF (375 pedigrees for
M-CSF, 318 for G-CSF) (figs. S10 and S11).
Colonies without cell death can be explained in
two ways: (i) the colony-initiating cell was a
bipotent GMP, and with the absence of selective
cell deaths, it must have differentiated exclusive-
ly into the lineage supported by the present cyto-
kine, or (ii) the colony-initiating cell was already
unilineage-restricted to this lineage (Fig. 2A).We
determined that the original GMP population
contained a maximum of 23 T 6% and 53 T 7%
potentially unilineage-restricted M and G cells,
respectively (fig. S3).

Quantifying the frequency of GMP pedigrees
without cell death in single-cytokine conditions
allowed us to identify the lineage-instructive ef-
fect of M- and G-CSF. In 88 T 2% (M-CSF) and
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Fig. 1. LysM::GFP is a marker for unilineage-restricted G or M cells. (A) Experimental procedure. (B
and C) LysM::GFP+ cells derived from GMPs cultured with only M- or G-CSF for 48 hours have lost
colony-forming potential (B) and are unilineage-restricted (C). Means T SD of 50 pedigrees per
condition and experiment (n = 3). CFU, colony-forming unit; IL, interleukin; SCF, stem cell factor.
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87 T 6% (G-CSF) of pedigrees leading exclu-
sively to M and G cells, respectively, no cell
death occurred (Fig. 2B). These percentages far
exceed those of colonies that could have been
generated from unilineage-restricted precursors
potentially contaminating the GMP population
that we used (P< 0.000006 andP < 0.0008 forM-
and G-CSF, respectively). M- and G-CSF there-
fore instructed at least 65% and 34% of bipotent
GMPs to differentiate into the M and G lineage,
respectively (Fig. 2, A and B). Moreover, depend-
ing on the cytokines present, around 90% of the
identical GMP population differentiates exclu-
sively into different lineages, which demonstrates
that these GMPs are bipotent. Thus, our assump-
tion of maximally 23% (M) and 53% (G) con-
taminating unilineage-restricted progenitors in
the starting GMP population is too conservative,
and both cytokines instruct most GMPs into
alternative lineages. In addition, we show thatM-
and G-CSF not only instruct lineage choice of
differentiating cells, but also induce or accelerate
differentiation: The onset of LysM::GFP expres-
sion in GMP progeny was accelerated by both
M-CSF (P < 0.00000026) and G-CSF (P <
0.000012) (fig. S12).

Previous studies had postulated an exclusive
selective effect of cytokines (22–28). In those
studies, however, cytokine receptors were ectopi-
cally expressed inmutated progenitor cell lines or
inappropriate cell types with molecular com-
position different from that of primary progeni-
tors physiologically responding to those cytokines
(24, 26). Studies with mice either lacking cyto-
kine receptors (22, 25) or expressing chimeric
cytokine receptors (23, 27, 28) demonstrated the

interchangeability of cytokine receptor–derived
signals for the generation (survival, proliferation,
or lineage choice) of specific lineages. However,
compensatory effects of other cytokines specifi-
cally for lineage choice could not be excluded.
Our study shows that M- and G-CSF can instruct
the lineage choice of genetically unmanipulated
GMPs that physiologically respond to these cyto-
kines (fig. S1). This demonstrates that signal trans-
duction pathways of cell-extrinsic cytokines can
influence the intracellular lineage commitment
machinery (29). The technology described here
for cell fate analysis will be useful for identifying
these signaling pathways and for analyzing com-
plex cellular systems in which a few individual
cells (such as stem cells) control tissue develop-
ment, homeostasis, and repair.
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Fig. 2. M-CSF and
G-CSF instruct lineage
choice in GMPs. (A) Pedi-
grees were grouped ac-
cording to the existence
of cell death events.
Green lines illustrate
LysM::GFP expression.
(B) The frequency of
colonies without cell
death until develop-
ment into only M cells
(black bars) or G cells
(white bars) cannot be
explained by contaminating unilineage-restricted precursors (compare fig. S3). Means T
SD, three independent experiments. M, monocytes or macrophages; G, granulocytic cells;
Epo, erythropoietin.
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