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Global systems biology, personalized medicine and
molecular epidemiology
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Systems biology in individuals and
populations

One of the great challenges for 21st century medicine is to
deliver effective therapies that are tailored to the exact biology
or biological state of an individual to enable so-called
‘personalized healthcare solutions’. Ideally, this would involve
a system of patient evaluation that would tell clinicians the
correct drug, dose or intervention for any individual before
the start of therapy. A practical approach to this evaluation
is the concept of patient stratification in which individuals are
biologically subclassified (classically according to some
genetic features) and biofeatures modelled in relation to
outcome. In principle, such stratification for personalized
therapy can be applied to drug safety and efficacy modelling
and to more general healthcare paradigms involving optimized
nutrition and lifestyle management.

Of course, truly personalized treatments, even if they can be
developed and applied widely, will lamentably always be a
luxury of the worlds’ richest citizens and nations. So in some
respects, personalized healthcare might appear to be at the
opposite end of the medical spectrum to the subject of
epidemiology in which disease risk factors and disease
incidence are studied in populations rich and poor alike.
Systems biology provides us with a common language for both
describing and modelling the integrated action of regulatory
networks at many levels of biological organization from the
subcellular through cell, tissue and organ right up to the whole
organism. The relatively new science of molecular epidemiol-
ogy concerns the measurement of the fundamental biochem-
ical factors that underlie population disease demography and
understanding ‘the health of nations’ and this subject naturally
lends it to systems biology approaches. Hence, systems
biology is certain to have in future a major role in both the
development of personalized medicine and in molecular
epidemiological studies.

Populations are, of course, made up of individuals and, in
principle, there are important unifying features that can be
considered from a systems perspective in which biological
parameter variability in individuals and their statistical
description in large populations can be used to interrogate
the outcomes of therapeutic interventions and global patterns
of disease distribution. Personalized healthcare and molecular
epidemiology are thus effectively two sides of the same
‘systems biology coin’; the essential differences are with
respect to the type of medical end points or outcomes that are
to be modelled (Figure 1). Metabonomics (see Box 1 for
definitions of terms) offers a practical approach to measuring
the metabolic end points that link directly to whole system

activity and metabolic profiles are determined by both host
genetic and environmental factors (Nicholson et al, 2002).

The majority of personalized approaches have so far been
mainly based on measuring genotype variations relating to
polymorphisms in drug-metabolizing enzymes such as cyto-
chrome P450 isoenzymes and N-acetyl transferases (Meyer
and Zanger, 1997; Eichelbaum and Burk, 2001; Srivastava,
2003). As there are many of examples of adverse drug
reactions being linked to specific enzymatic deficiencies or
mutations (Meyer and Zanger, 1997; Eichelbaum and Burk,
2001; Srivastava, 2003), it seems perfectly reasonable to
pursue genetically based personalized medicine strategies.
However, pharmacogenomic results have thus far proved to be
surprisingly disappointing, partly because of the unexpected
complexity of the human genome and the difficulties in
accurately and unequivocally describing human genotypes
and phenotypes (Nebert and Menon, 2001; Nebert et al, 2003;
Nebert and Vessell, 2004). Moreover, when considering the
wider aspects of human health, it is clear that most major
diseases are subject to strong environmental influences, and
the majority of people in the world die from what are, in the
broadest sense, environmental causes. At the personal level
external influences also affect drug metabolism and toxicity,
and individual outcomes of a drug intervention are the result
of conditional probabilistic interactions between complexes
of drug-metabolizing enzyme genes, a range of metabolic
regulatory genes and environmental factors such as diet
(Nicholson et al, 2004).

Even the basic concept of a ‘specified’ human population is
actually confusing and has often involved ill-defined notions
of ethnicity, which are associated with historical culturally
biased thinking rather than the genuine and usually small
genetic differences between human population groups. The
overall lack of genetic variation between populations is
remarkable in itself and this is a consequence of humans
having moved out of Africa only ca. 100 000 years ago. Thus,
according to microsatellite studies, only about 5–10% of the
total human genetic variance actually occurs between popula-
tions or ethnic groups (Cavalli-Sforza and Feldman, 2003). Of
course phenotypically, population subgroups around the
world vary widely, as do human disease distributions that
are related to diet and environmental factors. There are also
well-known differences in drug metabolism (and hence
toxicity potential) associated with variations in human
genotype and phenotype at both individual and population
levels (Meyer and Zanger, 1997; Eichelbaum and Burk, 2001;
Nebert and Menon, 2001; Nebert et al, 2003; Srivastava, 2003;
Nebert and Vessell, 2004). Obviously, there are many
connections between the health of general populations and
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that of the individuals that make them up, and so it is useful to
consider this from a molecular systems biology viewpoint
(Figure 1). However, measurement of parameters that relate
system level activities to drug interventional outcomes is
practically highly limited in applications involving large-scale
human populations (Box 2). Population stratification (in the
epidemiological rather than personal sense) according to age,
gender, diet, ‘ethnicity’ and socioeconomic factors is compli-
cated by the fuzziness of some of the classes, and this
complicated modelling of these features in relation to systems
biology (omics) metrics. Thus, bridging the subjects of
personal healthcare and population epidemiology via system
biology will require a pragmatic and practical approach, which
leads us to the concept of ‘top-down’ systems biology and the
derivation of metabolic parameters of ‘global’ system function.

‘Top-down’ systems biology and
metabonomics

We have been advocating the use of metabolic measurement at
the system level utilizing metrics obtainable from biological
fluids such as urine and plasma for many years (Nicholson and

Wilson, 1989). A particular advantage of biological fluid
monitoring or screening is that it is minimally invasive or non-
invasive and can be applied on a large scale for human
population phenotyping (Nicholson et al, 1999, 2002). The
science of metabonomics deals with understanding metabolic
changes of a complete system caused by interventions (Nebert
et al, 2003; Dumas et al, 2006a, b) and in particular we
have noted that metabolic end points are the result of gene–
environment interactions in their broadest sense, including
extended genome and parasitic interactions (Wang et al, 2004;
Dumas et al, 2006a, b; Martin et al, 2006). We have previously
outlined our ideas about conditional probabilistic (Bayesian)
interactions between genes and environment with respect to
adverse drug reactions in individuals and have suggested a
hypothetical (Pachinko) model to help study and visualize
these interactions (Nicholson and Wilson, 2003). In the
Pachinko model, a popular Japanese pinball machine game
is used as a metaphor to underscore the idea that metabolic
fate results from a sequence of conditional probabilistic
interactions between metabolites and components of the
cellular biochemical network. In particular, drug molecules
can be thought of as a tumbling shaped charge represented as
a ball in the machine. Each ball (drug molecule) hits pins

Box 1

Definitions of terms
Conditional metabolic phenotype: The characteristic phenotypic metabolite profile in any compartment or fluid resulting from the interaction of
the host genome with environmental factors—this can be considered to be the directly measurable component of the metabonome.

Co-metabolite: A metabolite that can only be formed by the integrated biochemical actions of more than one genome, for example, the gut
microbial metabolism of a mammalian metabolite or vice versa (Nicholson et al, 2005).

Metabolome: The quantitative description of all the low-molecular-weight components (o1 kDa) of endogenous (host genome control)
metabolites in a specified biological sample. Each cell type and biological fluid will have a characteristic set of metabolites that is characteristic
of a species under specific environmental conditions and fluctuates through time according to physiological demands.

Metabonome: All the theoretical sums and products of the interactions of multiple metabolomes in a complex system including extended
genome, symbiotic, parasitic, environmental and co-metabolic interactions. Urine and plasma are fluids that carry metabolic signatures that
result from such interactions.

Metabonomics: The quantitative measurement of the multiparametric time-related metabolic responses of a complex (multicellular) system to a
pathophysiological intervention or genetic modification (Nicholson et al, 1999, 2002). Thus metabonomics seeks to assess the global system
level homeostatic and pathological responses to interventions or stressors. The word origin is from the Greek (meta meaning change and nomos
meaning a rule set or set of laws).

Metabolomics: The comprehensive quantitative analysis of all the metabolites of an organism or specified biological sample. There are
numerous and often conflicting uses of this word in the literature, but they are all basically analytical definitions (e.g. Raamsdonk et al, 2001).
Also it is often not exactly clear what constitutes a metabolite because there is a continuum of sources of molecules that can be considered to
be metabolites, ranging from those entirely under host genome control to exogenous dietary compounds and drugs to those being extensively
co-metabolized by the gut microbiome (Nicholson and Wilson, 2003; Nicholson et al, 2004).

Metabotype: A metabolic profile that defines a phenotype which relates to genetic variation of the mammal (Gavaghan et al, 2000).

Microbiome: The flexible consortium of microorganisms, bacteria, fungi and yeasts that live commensally or symbiotically in the gut of higher
animals (Lederberg, 2000; Nicholson et al, 2005). The microbial species present and relative abundance vary significantly between animal
species and between individuals within a species. Human individuals may have microbiome characteristics that are unique to their individual
biology. There is intrinsic stability in an individuals’ microbiome, but certain interventions such as drugs or antibiotics may cause
perturbations.

Pharmaco-metabonomics: The prediction of the quantitative outcome of a healthcare (typically drug) intervention in a given individual based
on a pre-dose mathematical model of the metabolic state constructed in a supervised learning system (Clayton et al, 2006).

Theranostic: A specific combined diagnostic for a particular disease with a therapy for that condition. The test, which may be genetic, results in
patient stratification of the population so that the drug is more efficiently directed.

Xeno-metabolome: The characteristic profile of non-endogenous compounds observed in the biofluid as a result of individual or population
exposures through their environment or diet, either passively or through self-administration e.g. drugs and their metabolites, pollutants, dietary
components, herbal medicines, etc (Nicholson and Wilson, 2003; Teague et al, 2004).
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(representing drug-metabolizing enzymes—the exact position
of which would analogously vary with SNP variations), which
transforms the molecule sequentially and so alters its course
through the machine (cell/body). Eventually, the drug is

metabolized to a state that readily leaves the body and so the
exits from the machine at hypothetical ‘excretion points’. The
behaviour of each individual ball is difficult to predict, but
the probabilistic path of the whole population can be
modelled. Thus, the environmental interaction components,
for example, gut microbial metabolites, chemicals or dietary
compounds, can also be visualized as other balls or shaped
objects tumbling through the Pachinko machine. These agents
may then block or interfere with or even enhance the drug
metabolism pathways. This equates to altering the probabil-
ities of metabolic flow through the system, and the resulting
changes in the pathway utilization may be modelled using
Bayesian methods. These gene–environment interactions can
result in many outcomes—some of which may generate
metabolites that cause cellular damage or idiosyncratic
(unpredictable) toxicity. Related to this is our concept of the
‘conditional metabolic phenotype’ or CMP (Nicholson et al,
2005) in which both genetic factors and exogenous factors,
such as diet, exposure to foreign chemicals and so on, interact
to determine the possible outcomes of a drug or dietary
intervention (Nicholson et al, 2004, 2005; Dumas et al,
2006a, b). The most important feature of the CMP concept
is that it represents a starting point of an individual in a
multivariate metabolic space that is the result of the combina-
tion of many physical, chemical, genetic and environmental
influences. We have hypothesized that it is the starting
position irrespective of the relative contributions of the
individual ‘vector’ components that determines the outcome
of an intervention (Nicholson et al, 2004) and this is exactly
the basis of the personalized healthcare paradigm.

Figure 2 Pharmaco-metabonomic modelling procedure: spectroscopic data on pre-dose metabolic fingerprints (X matrix) from biofluids such as urine and plasma are
statistically linked to outcome (quantitative toxicity (Y1) drug metabolism (Y2) matrixes) of a drug intervention via multivariate statistics such as partial least squares
methods. Typically, 20–50% of all data is used in the training set construction. The predictive power of the models is then tested using a test set or a cross-validation set
to assess model robustness. It is also possible as an additional test to avoid overfitting of data, to deliberately permute the training set matrixes to induce a false model
that should have a very low predictive capability.

Figure 1 Relationships between systems biology, personalized healthcare and
molecular epidemiology (dotted lines indicate indirect connections or influences).
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So how do we start to apply these ideas to real systems?
‘Bottom-up’ modelling approaches if viewed in the cold light of
day can never really work in the world of gigantic human
phenotypic variability. Indeed even in vitro to in vivo
extrapolations of drug metabolism and toxicity within one
species are notoriously unreliable, and ‘bottom-up’ systems
biology modelling poses a vastly more complex challenge
because most of the quantitative features needed to make
reasonable cellular models are simply not measurable in
‘intact’ humans. So approaches appear to work very well in the
systems biology of yeast or Escherichia coli cultures are not
readily translatable into the modelling of either individual
human or population biology.

Pharmaco-metabonomics and prediction
of drug intervention outcomes

In the alternative ‘top-down’ approach where metrics of the
systemic homeostatic activity are obtained, we have now
shown a ‘proof-of-concept’ of a new ‘pharmaco-metabonomic’
approach to understanding and predicting interventional
outcome of drugs (such as toxicity and xenobiotic metabolism
in animal model systems) based on mathematical models of
a pre-dose metabolic profiles (Clayton et al, 2006). In these
studies, we investigated the effects of three structurally diverse
hepatotoxins in rats (galactosamine, allyl alcohol and para-
cetamol), which act via different mechanisms, and found that
pre-dose urinary profiles carried information about the degree
of post-dosing toxicity, and in the case of paracetamol
information about variation of drug metabolism itself.
Pharmaco-metabonomics is thus the prediction of the outcome
of an intervention in individuals based on pre-dose metabolic

state of that individual (Nicholson and Wilson, 2003; Clayton
et al, 2006). In a preliminary study on galactosamine toxicity,
we found that the responder/non-responder pattern of liver
damage at 24 h post-dosing was reflected in the pre-dose
metabolic profile of the urine. This was achieved using a
simple principal components analysis (which is an unsuper-
vised method that is blind to class in its construction). In a
more complex study, a supervised approach, projection-on-
latent structure method, was used working with animals given
a threshold toxic dose of paracetamol that produced a wide
range of liver toxicity between individuals (Figure 2). Here, we
found once again that there was a significant association
between pre-dose metabolic profile and post-dose outcome
with respect to liver damage severity and indeed to drug
metabolism (specifically the paracetamol to paracetamol
glucuronide excretion ratio was strongly correlated with pre-
dose urinary metabolite profiles). These studies imply that
there may be future possibilities of applying this approach
non-invasively to screening humans in populations. However,
practically this is still far off, and we need to extend our
knowledge on the relationships between endogenous meta-
bolic status and drug metabolism outcomes for a much wider
range of drugs. Of course, there are also significant ethical
issues involved with such screening procedures in man.
Furthermore, we should not forget that models obtained by
the integration of various ‘omics’ approaches (pharmaco-
genomics, pharmacoproteomics and pharmaco-metabo-
nomics) may have improved predictive power, which might
indeed be required to get personalized healthcare to work in
the real world. Indeed, we have recently shown that
proteomics and metabonomics can be statistically integrated
to produce new trans-omic combination biomarkers to classify
experimental disease states such as xenograft models of

Box 2

Metabolic screening of individuals and populations
Current methodologies for metabolic profiling: All metabolic profiling revolves around NMR and mass spectrometric (MS) methods, as these
technologies can give multiparametric information on many classes of molecules often at the same time. In the case of NMR, intact fluids can be
analysed directly (Nicholson and Wilson, 1989; Nicholson et al, 2002). In the case of MS, chromatographic hyphenation is usually required
either to types of liquid chromatography (LC–MS) (Wilson et al, 2005; Plumb et al, 2006) or to gas chromatography (GC–MS) following
chemical derivatization (Raamsdonk et al, 2001). All technologies are low cost in comparison to other omics approaches such as proteomics and
gene arrays. The typical cost per sample will vary according to the number and types of experiment performed, but might be expected to be in
the range of $10–$150. NMR is the most rapid method and can deliver a reasonable quality spectrum with quantitative information on up to
several hundred metabolites present at mid-micromolar level and above within minutes of collecting the sample. Low micromolar detection is
possible with longer scanning times. NMR is also by far the most reproducible technology from an analytical point of view and has the largest
linear dynamic range (4105). Direct absolute quantification is possible by NMR, but is much more time consuming and usually is not necessary
when combined with pattern recognition. GC–MS and LC–MS methods are usually more sensitive than NMR—sometimes by several orders of
magnitude—but in the case of LC–MS, quantification is dependent on ionization efficiency and peak overlap. Both GC–MS and LC–MS are
highly reproducible. Absolute quantification by LC–MS is difficult unless there is a standard to compare with. All the technologies can
potentially handle hundreds of samples per day—in the case of MS, this is limited by the chromatographic run times.

Building metabonomic and pharmaco-metabonomic models: The basic procedure for constructing pharmaco-metabonomic models is outlined
in Figure 2. The sample sizes required to build robust predictive models vary according to the application. In the case of human population
metabonomic profiling, we have produced highly predictive models using a few hundred individuals (Dumas et al, 2006a, b). In the case of
pharmaco-metabonomics for paracetamol toxicity, we obtained good models using ca. 80 animals (Clayton et al, 2006). Models that work on
humans (e.g. for disease diagnosis) always require large training and test sets and this is likely to be true for pharmaco-metabonomics. This is so
that all of the human metabolic variation and sources are well sampled in relation to the drug dosing outcome. NMR-derived metabonomics can
give very strong models for population biochemical phenotyping (Brugman et al, 2006; Clayton et al, 2006) or for individuals in terms of class
prediction (e.g. population of origin). In pharmaco-metabonomics, it may not be possible to give this level of precision—but it may be
appropriate to express the outcome in simpler ways such as low, medium or high risk of an adverse reaction—with some statistical definition
given to these classes, which will be case dependent and is as yet unknown. In the case of population studies, we are mainly concerned with the
statistical description of multivariate metabolic parameters of large numbers of individuals stratified by age, gender, ethnicity, diet and
environmental factors that could be measured. As this is a descriptive process, it is much easier to design molecular epidemiological studies
with metabolic classifiers and outputs than it is to design pharmaco-metabonomic studies where the individuals must be subject to controlled
experiments to build the initial models.
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prostatic cancer (Rantalainen et al, 2006). However, with
current technology, the scale-up of multi-omics strategies to
man would be impractical and prohibitively expensive.

The most likely near-term implementation of pharmaco-
metabonomics would be in the pharmaceutical industry itself
at the clinical trial or development stage when drugs are first
going into man. Here pre-dose metabolic models could be built
and then related to quantitative metabolic fates of compounds
and any observed adverse reactions. This would then lead to
knowledge about the possible contraindications of a particular
drug used in certain phenotypic classes of individuals, which
is effectively a type of patient stratification. In any case, both
early and clinical safety studies would benefit from the
improved metabolic descriptions of test subjects (animal or
man) and their responses to novel therapeutic agents, good or
bad. It must also be said that the pharmaco-metabonomic
concept is not limited just to drug interventions. Effects of
dietary modulation, pre-biotic and probiotic treatments and
other lifestyle changes could also ultimately be evaluated in
this way. This is important because ‘personalized healthcare’
means different things for different people and, in general
populations, it is lifestyle management not drug therapy that is
most effective for disease prevention, which of course is better
than having to find a cure.

Populations and molecular epidemiology:
getting systems biology into man

Getting systems biology out of the laboratory into the more
general human population both for screening purposes and in
order to understand our own changing health patterns is a
formidable challenge. Despite relentless advances in medical
technology, many major indications of population morbidity
and mortality such as heart disease, diabetes, obesity and
cancer (all problems in which genetic and environmental
factors are closely entwined) are rising all over the world.
Interestingly, many of these diseases may be related to changes
in the activities or composition of the gut microbiota
(microbiome), which has probably been profoundly affected
by our lifestyle changes (especially antibiotic use) over the last
50 or so years. In fact, the microbiome is the exact point where
host genetics meets environment and can be considered to be
our most integrated and influential ‘environmental’ factor
(Nicholson et al, 2005). Given that humans have slowly
evolved with this ‘extended genome’ of the microbiota,
perturbation of this close association is potentially dangerous
and, controversially, may be a root cause of many of our
rapidly spreading ‘modern’ diseases (Nicholson et al, 2005).
Indeed recent studies by us and others have shown that gut
microbiotal variations affect the development of diet-induced
insulin resistance and type II diabetes mellitus (Dumas et al,
2006a, b) and even the development of type I diabetes in
experimental animals (Brugman et al, 2006), which until
recently was thought of as being related to purely mammalian
(human) genome problems. Thus, wherever we turn we see
hypercomplexity in disease development and this must be
taken into account in systems biology disease modelling if we
are ever going to get effective treatments that actually work in
man. In examining human populations for molecular epide-

miological purposes, it will probably be important to measure
metagenomic features of the gut microbiome, which strongly
influences exact mammalian metabolic phenotypes of mice
and men (Holmes and Nicholson, 2005; Gavaghan-McKee
et al, 2006) and so, using the pharmaco-metabonomic
argument, must also influence disease development and
possibly optimized therapeutic interventions in individuals
and populations. So as systems biology moves forward with
the strong driver of personalized medicine, we will also be able
to apply these strategies for looking at the changing
demography of human disease around the world. Also the
creation of personalized health science for the ‘rich nations’
should hopefully also benefit the people of developing nations,
perhaps especially those countries that are trying to Wester-
nize their economies and lifestyles, and in so doing are now
acquiring Western disease patterns at an alarming rate.
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