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A global aging population, normally accompanied by a high

incidence of aging-associated diseases, has prompted a

renewed interest in basic research on human aging. Although

encouraging progress has been achieved using animal models,

the underlying fundamental mechanisms of aging remain

largely unknown. Here, we review the human induced

pluripotent stem cell (hiPSC)-based models of aging and aging-

related diseases. These models seek to advance our

knowledge of aging molecular mechanisms and help to

develop strategies for treating aging-associated human

diseases.
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Introduction
Owing to increased lifespan and subdued fertility, the

world population aged 60 and over is anticipated to

increase to 21.8% of the total population by 2050 [1].

Many individuals in an aging population will be inflicted

with aging-associated diseases, such as various neurode-

generative disorders [2]. This phenomenon is of public

concern and has thus spurred research in this area. It is

believed that healthy aging could be accomplished if

mechanisms underlying human aging were to be eluci-

dated. Modern biological theories of human aging are

classified into programmed theories and error theories.

The programmed theories demonstrate that aging is

regulated by some intrinsic mechanisms — by altered

switch genes, changed hormones or even a dysfunctional

immune system. On the contrary, the error theories

emphasize cumulative environment-caused damage,
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such as reactive oxygen species, cross-linked macromol-

ecules, DNA damage, and broken energy machines [3].

However, neither of these theories alone can explain all

the phenomena and mechanisms at the root of aging. In

fact, to date, the fundamental mechanisms of human

physiological aging remain largely unknown.

Practical tools for studying aging encompass many model

organisms. For instance, the insulin/insulin-like growth

factor signaling pathway, a major molecular aging path-

way, was first found in Caenorhabditis elegans and sub-

sequently found conserved in all other model animals and

humans [4]. As an ideal system to translate knowledge

from lower organism models into mammalian species, a

number of mouse aging models have been generated

including those caused by mitochondrial oxidative stress

[5], deficient DNA repair ability [6], overexpressed tumor

suppressor genes [7] or abnormal genes involved in

human premature aging syndromes [8]. However, mice

have been separated from humans for 84–120 million

years with distinct evolutionary pressures [9]. One of

the many consequences is, for instance, the extension

of telomere length (40–60 kb) in mice compared to

humans (5–15 kb). Another difference is p16 pathway,

which appears to be uniquely employed in human aging

[10]. Moreover, mice do not spontaneously develop neu-

rodegenerative disorders, the major causes of disability

and mortality among elderly people [11]. These pitfalls

call for advanced human models. Here, we will focus on

the evolution of human aging models (Figure 1), and will

summarize results related to recently established hiPSC-

based disease models for aging and various aging-related

neurodegenerative disorders (Figure 2; Tables 1 and 2).

Classic cell models for human aging
In 1961 primary human cells were found to undergo

population doubling only 50–100 times before encounter-

ing an inevitable proliferation arrest in culture. This

phenomenon is termed replicative senescence, and

represents the first popular human cellular aging model

(Figure 1). The feasibility of replicative senescence is

based on the fact that the number of times human fibro-

blasts can be passaged in culture is inversely proportional to

the age of the donor [12]. Following this, normal human

somatic cells were discovered to also undergo senescence

upon exposure to aging-associated stresses such as DNA

damaging and oxidative stress agents [13], or upon over-

activation of oncogenes (e.g. Ras, Raf, and E2F2)

[14]. Currently, to evaluate the progress of cell aging,

several molecular hallmarks have been used, including
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Figure 1
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Evolution of aging models. Research on aging utilizes different model organisms including budding yeast, nematode worms, fruit flies, mice, and

human beings. Classic human aging research models employ successive passaging resulting in replicative senescence and stress stimulations that

can induce cell senescence in an accelerated way. Somatic reprogramming followed by directed differentiation, in combination with targeted gene

editing technologies, is providing an unprecedented avenue to obtain various human cell and tissue types in vitro with which studying human aging and

aging-related diseases becomes feasible. Moreover, cell and organ derivatives from patient-specific induced pluripotent stem cells (iPSCs) can be

transplanted into animal models and the integrated human living materials could provide an opportunity to study human tissue and organ aging or

disorders in an in vivo context. * indicates the cells bearing pathogenic mutation(s).
proliferative markers Ki67 and PCNA, senescence-associ-

ated b-galactosidase (SA-bgal) [15], senescence-associated

heterochromatin foci (SAHF) [16], p16 [17��], and IL-8

[18��]. Another popular approach to study human aging is

the investigation of dermal fibroblasts isolated from

patients with premature aging syndromes (Figure 1), which

share many similar features and mechanisms with physio-

logical aging [19]. These syndromes include Hutchinson–
Gilford progeria syndrome (HGPS), and Werner syndrome

[20]. However, the fact that specific living tissue samples,

such as neurons and vessel wall cells, are inaccessible

severely hampers advancements in this field.

Induced pluripotent stem cell (iPSC)-based
models for human aging
An important breakthrough in human aging models is the

reprogramming of human somatic cells into hiPSCs by
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overexpression of OCT4, SOX2, KLF4, and c-MYC

[21��]. Since then, powerful tools for establishing iPSC

models for aging-related diseases have also emerged [22].

Owing to the self-renewal ability and pluripotency of

hiPSCs, and established hiPSC directed differentiation

protocols toward multiple lineages [23], various aged or

diseased cell types can be massively cultured in a dish to

re-establish patient-specific tissues and even organs for

mechanism studies and drug discovery and testing

(Figure 1).

Modeling human premature aging syndromes
with iPSCs
Studying progeroid syndromes could lead to a greater

understanding of normal human aging. Genetic back-

ground and disease characteristics are thoroughly studied

for some progeroid syndromes such as HGPS. HGPS
ing-related disorders, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/j.ceb.2012.08.014
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Figure 2
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iPSC-based human aging models. Normal human aging expands several decades, and is affected and complicated by genetic and environmental

factors. The length of this process hampers the study of the molecular and cellular mechanisms underlying aging. The use of iPSCs and their

derivatives from patients with accelerated aging (like those with Hutchinson–Gilford progeria syndrome) may partially recapitulate the aging process in

vitro and thus be an alternative model to study human aging in a dish.
patients show growth retardation after one year of age,

followed by the appearance of wrinkled and sclerotic skin,

decreased joint mobility, cardiovascular problems, and

die at a median age of 13. HGPS is usually caused by a

single nucleotide substitution of LMNA, which encodes

lamins A and C [24]. The prevalent LMNA (G608G)

mutation activates a cryptic splicing site in prelamin A,

leading to a truncated mutant of lamin A known as

progerin. Progerin accumulation results in abnormal

nuclear envelopes, mis-regulation of heterochromatin

and nuclear lamina proteins, attrited telomeres, and geno-

mic instability [25]. The pathogenic progerin is typically

present in vascular smooth muscle cells (SMCs),

mesenchymal stem cells (MSCs), and dermal fibroblasts

of HGPS patients. In addition, progressive accumulation

of progerin also occurs in cultured senescent cells and

cells of elderly individuals [26]. Notably, accumulation of

progerin in MSCs has been suggested to contribute to

accelerated as well as physiological aging progress [27].

Recently, three independent groups have established

accelerated human aging models with hiPSC technology

[28��,29��,30�] (Figure 2; Table 1). In agreement with the

report that pluripotent stem cells (PSCs) do not express

A-type lamins [31], HGPS–iPSCs show absence of
Please cite this article in press as: Liu G-H, et al.: iPSC technology to study human aging and ag
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progerin and nuclear envelope abnormalities. More

importantly, the nuclear envelope-associated chromatin

aberrances were also reset as a result of induced plur-

ipotency. Five hundred and eighty-six autosome genes

were found to be methylated differently between HGPS

and healthy fibroblasts, while in iPSCs, only thirty-three

genes were methylated differently [28��]. However, pro-

gerin expression and aging-associated phenotypes were

restored in several differentiated mesodermal cell types,

such as MSCs [29��], vascular SMCs [28��,29��], and

fibroblasts [29��,30�,32��]. Moreover, the progerin-

expressed mesodermal cell types are much more vulner-

able to apoptotic stress [29��,30�]. In addition, progerin

knockdown or targeted genetic correction of mutated

LMNA in HGPS–iPSCs can effectively reverse disease

phenotypes of their mesodermal derivatives, demonstrat-

ing that these observed aging-associated phenotypes are

progerin-dependent [32��]. Since these HGPS–iPSC

models present most of the expected pathologic features,

they could be employed as invaluable platforms to study

the molecular mechanisms of human premature aging

disorders [33]. Moreover, studies based on these iPSC

models may result in the discovery of novel mechanistic

clues for physiological human aging. For instance,

DNAPKcs, a DNA repair and telomere capping-related
ing-related disorders, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/j.ceb.2012.08.014
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Table 1

PSC-based human aging models

Diseases Genetic mutation Primary

cells

Years

old

Reprogramming

approaches

Differentiation Relevant phenotype Animal

models

Refs

HGPS LMNA (G608G) Fibroblasts 8, 14 Retrovirus; OSKC SMCs Progerin expression,

misshapen nuclei and lost

H3K9me3 are restored

No [28��]

LMNA (G608G) Fibroblasts 8, 14 Retrovirus; OSKC MSCs, SMCs,

Fibroblasts

DNA damage, nuclear

abnormalities, and apoptosis

induced by stresses and

hypoxia are increased

Yes [29��]

HGPS,

aWS

LMNA

(G608G, E578V)

Fibroblasts 3, 13 Retrovirus; OSKC

Lentivirus; OSKCNL

Fibroblasts Nuclear abnormalities,

senescence and

susceptibility to apoptosis

are increased

No [30�]

LMNA

(G608G, E578V)

Fibroblasts 3, 13 Retrovirus; OSKC SMCs,

Fibroblasts

Progerin and misshapen

nuclei are restored but not in

corrected cells

No [32��]

DC DKC1 (del-L37) Fibroblasts 7 Retrovirus; OSKC No TR and DKC1 are

upregulated during

reprogramming

No [41��]

DKC 1 (L54V,

DL37)

TCAB 1 (H376Y,

G435R)

Fibroblasts 7–45 Retrovirus;

Lentivirus;

OSKC

No Lengthening of telomeres is

abrogated, and extended

culture leads to progressive

telomere shortening and

eventual loss of self-renewal

No [42��]

TERT (P704S

and R979W)

Fibroblasts >15 Lentivirus; OSKC No Reduction in telomerase

levels blunts the natural

telomere elongation, and

extended culture leads to

progressive telomere

shortening and eventual loss

of self-renewal

No [42��]

Centenarian – Fibroblasts 92–101 Lentivirus; OSKCNL Fibroblasts Rejuvenated physiology No [72��]

HGPS, Hutchinson–Gilford progeria syndrome; aWS, atypical Werner syndrome; DC, dyskeratosis congenital; O, Oct4; S, Sox2; K, Klf4; C, c-myc; N,

Nanog; L, Lin28; MSCs, mesenchymal stem cells; SMCs, smooth muscle cells.
protein kinase, is identified as a binding partner of pro-

gerin and is downregulated in HGPS fibroblasts, HGPS–
iPSC-derived SMCs, as well as fibroblasts isolated from

physiologically aged individuals [28��], thus providing a

potential explanation of how progerin cooperates with

dysfunctional telomeres or a defective DNA repair sys-

tem to contribute to normal cellular aging [34].

Modeling human telomere dysfunction
diseases with iPSCs
Telomeres are involved in the processes of both physio-

logical aging and HGPS, supporting the idea that telo-

meres are a vital factor in aging. In fact, telomere length is

regarded as a reliable marker for the age of human somatic

cells [35��]. Telomeres are repeated sequences, which

could be replenished by telomerase containing the telo-

merase reverse transcriptase (TERT) and telomerase

RNA (TR). However, TERT exists only in pluripotent

cells or cancer cells [36]. As a result, telomeres become

gradually shorter in both mouse and human somatic cells

with age [35,37] as well as cells with telomerase defects.

Reprogramming of somatic cells into pluripotency
Please cite this article in press as: Liu G-H, et al.: iPSC technology to study human aging and ag
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provides a good platform to study telomere biology and

aging mechanisms, because during reprogramming, telo-

merase activity is upregulated in both mouse and human

cells [38�], although loss of telomerase results in com-

promised reprogramming efficiency [39��].

Dyskeratosis congenital (DC) is caused by mutations in

the dyskerin gene (DKC1) resulting in shortened telo-

meres and accelerated cellular senescence [40]. An inter-

esting question of whether or not DC fibroblasts could be

reprogrammed and what the fate of telomeres in the

resulting iPSCs would be has recently been addressed.

DC-specific hiPSCs have recently been generated by the

Daley and Artandi groups [41��,42��] (Table 1). Both

studies demonstrate that telomerase impeccability is

not necessarily required for the derivation of DC-hiPSCs.

Using DKC1 del-L37 mutant fibroblasts, the Daley group

proved that telomeres became longer in DC-hiPSCs

relative to DC fibroblasts through upregulation of TR
and DKC1, and further TR upregulation was observed to

be a common feature of pluripotent states during repro-

gramming of DKC1(del37L/A386T), TR(TR+/�) mutant
ing-related disorders, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/j.ceb.2012.08.014
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Table 2

PSC-based human aging-related neurodegenerative disease models

Disease Genetic mutation Primary

cells

Years

old

Reprogramming

method

Gene

correction

Neural

differentiation

Relevant phenotype Refs

PD Sporadic, G20446a Fibroblasts 57 Retrovirus; OSKC No No No [47�]

Sporadic, G20442,

G20443, G20445,

G20446, G08395a

Fibroblasts 53–85 Lentivirus; excisable,

OSKC, OSK

No Yes No [48]

Sporadic, G20442,

G20443, G20445,

G20446, G08396a

Fibroblasts 53–85 Lentivirus; excisable,

OSKC, OSK

No Yes No [49]

AG20442, AG20443,

AG20446a
Fibroblasts 53–85 Lentivirus; excisable,

OSK

No Yes Reduced motor asymmetry

in PD–iPSC transplanted

Parkinsonian rats

[50]

LRRK2 (G2019S) Fibroblasts 60 Retrovirus; OSK No Yes Elevated alpha-synuclein

expression, increased

sensitivity to cellular

stressors

[51�]

PINK1 (C1366T,

T509G)

Fibroblasts 53–71 Retrovirus; OSKC No Yes Less recruitment of Parkin to

the mitochondria

[52]

SNCA (A53T, E46K) Fibroblasts,

hESCs

– Lentivirus; excisable,

OSKC

Yes Yes No [53��]

SNCA triplication Fibroblasts 48 Retrovirus; OSKC No Yes Accumulation of alpha-

synuclein, inherent

overexpression of oxidative

stress markers, and

increased sensitivity to

peroxide-induced oxidative

stress

[56]

SNCA triplication Fibroblasts 55 Retrovirus; OSKC No Yes SNCA expression doubled [54�]

Parkin (DExon

3 or and 5)

Fibroblasts – Lentivirus; OSKC No Yes Increased spontaneous DA

release, decreased DA

uptake and elevated ROS

[58]

Sporadic, LRRK2

(G2019S)

Fibroblasts 51–66,

44–68

Retrovirus; OSK No Yes Fewer and shorter neurites

and a significant increase of

apoptotic cells

[59]

AD Sporadic Fibroblasts – Lentivirus; OSK No Yes Functional b-secretases and

g-secretases expressed

[66]

PS1 (A246E),

PS2 (N141I)

Fibroblasts 56, 81 Retrovirus; OSKNL No Yes Increased amyloid b 42

secretion, sharply

responsible to g-secretase

inhibitors and modulators

[55�]

Sporadic, APP

duplication

Fibroblasts 78,

46–53

Lentivirus; OSKC No Yes Increased amyloid b, Pi-tau

and aGSK-3b in sAD2 and

APPDp

[65��]

Trisomy of

chromosome 21

Fibroblasts – Lentivirus; OSKC No Yes Increased amyloid b peptide

production and aggregates,

phosphorylation and

redistribution of tau

[67]

ALS SOD1 (L144F) Fibroblasts 82 Retrovirus; OSKL No Yes No [38�]

TDP-43 (M337V) Fibroblasts 56 Retrovirus; OSKC No Yes Higher levels of soluble and

detergent-resistant TDP-43,

decreased survival, and

increase vulnerability to PI3K

pathway inhibition

[71]

PD, Parkinson’s disease; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; O, Oct4; S, Sox2; K, Klf4; C, c-myc; N, Nanog; L, lin28.
a From Coriell Institute for Medical Research.
fibroblasts. By contrast, the Artandi group found that the

same biochemical defects in original fibroblasts with

TCAB1(H376Y/G435R), TERT(P704S/R979W) or DKC1
(L54V/del37L) mutations were still present in DC-hiPSCs,

including diminished telomeres and reduced telomerase

activity. Moreover, the telomeres of DKC1–DC-hiPSCs are
Please cite this article in press as: Liu G-H, et al.: iPSC technology to study human aging and ag
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progressively shortened during extended culture, ulti-

mately leading to loss of self-renewal. The authors claim

that these processes accurately recapitulate the features of

DC development. Although inconsistency has been

observed between these two studies, both reports highlight

the role of shorter telomeres in DC pathogenesis. A recent
ing-related disorders, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/j.ceb.2012.08.014
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study by Wang et al. revealed the molecular mechanism of

telomere heterogeneity of iPSCs [43], which may provide

clues to the above contradiction. Reprogramming of telo-

merase and telomeres was found to be gradual, being

influenced by telomerase gene activation, passage number

and other telomerase-independent mechanisms in mouse

iPSCs. Even some wild-type mouse iPSCs failed to

lengthen telomeres, particularly at early passages. More-

over, for TR�/� iPSCs, telomeres were gradually shortened

with increased chromosome fusion during later passages.

This indicates that telomerase deficiency could not block

reprogramming onset but is essential for telomere main-

tenance and chromosomal stability of iPSCs. Such con-

clusions are in line with the situations encountered with

human DKC1–DC iPSCs.

hiPSC-based models for aging-related
degenerative diseases
Aging is perhaps the biggest risk factor for many human

diseases. During aging, there are a number of cellular

alterations, such as accumulated mis-folded proteins, that

may contribute to aging-related diseases. For example,

mis-folded proteins are found in many neurodegenerative

disorders such as Parkinson’s disease (PD), Alzheimer’s

disease (AD) and amyotrophic lateral sclerosis (ALS).

Incidence of these diseases increases with aging. iPSC

technology has shown huge potential to study these

degenerative diseases.

PD is one of the most common aging-associated neuro-

degenerative disorders, characterized by accumulation of

Lewy body inclusions and preferential loss of dopamine

(DA) neurons in the substantia nigra pars compacta [44].

Notably, mutations in a-synuclein (SNCA) and leucine-

rich repeat kinase 2 (LRRK2) genes frequently cause

autosomal dominant PD, while loss-of-function

mutations in PTEN-induced putative kinase 1 (PINK1)

or Parkin (PRKN) are implicated in autosomal recessive

PD [45]. Direct studies of such neurological disorders in

humans are impractical, since vital neuron isolation is

difficult. One alternative has been the use of neuroblas-

toma cell lines [46]. This and other models, however, are

far from mimicking a physiological setting, and limited

toward the elucidation of cellular and molecular mech-

anisms as well as clinical applications. iPSC technology

makes it a reality for PD specific neuronal cells to

be studied in vitro. In recent years, about a dozen

PD–iPSC models have been established [47�,48–
50,51�,52,53��,54�,55�,56–59] (Table 2). Specific aspects

of PD-associated phenotypes have been successfully

recapitulated. Consistent with a-synuclein aggregates

and DA neuron loss in PD patients, SNCA triplication

iPSC-derived DA neurons display a twofold increase of a-

synuclein [54�], increased expression of oxidative stress

markers, and higher sensitivity to oxidative injuries [56].

A similar situation was observed for LRRK2 G2019S

iPSC-derived DA neurons [51�], which is consistent with
Please cite this article in press as: Liu G-H, et al.: iPSC technology to study human aging and ag
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the notion that LRRK2 and SCNA may share a common

pathogenic pathway in PD [60]. As for recessive PD, in

PRKN (Exon 3 and/or 5 lost) mutant iPSC-derived DA

neurons, Parkin dysfunction reduces DA uptake and

enhances DA release. These alterations may result from

the increased expression of oxidative stress and mono-

amine oxidase, which are important roadblocks of precise

neurotransmission [58]. In PINK1 (C1366T, T509G)

mutant iPSC-derived DA neurons, recruitment of Parkin

to mitochondria is impaired, and neurotransmission is

consequently abnormal [52]. These findings indicate that

these recessive PD mutations may result in DA neuron

dysfunction through a defective Pink1–Parkin pathway.

AD is a prevalent age-dependent neurodegenerative dis-

order [61]. Extracellular b-amyloid (Ab) plaques and

intracellular neurofibrillary tangles of hyperphosphory-

lated tau proteins are two definitive traits for diagnosed

AD. It is unknown, however, whether and how these

tangles and plaques contribute to disease progression

[62]. Mutations of APP, presenilin 1 (PS1), and presenilin

2 (PS2) are identified in early-onset (<60 years) familial

AD (FAD) [63] which accounts for less than 5% of AD

cases, while the vast majority (>95%) are attributed to

late-onset sporadic AD (SAD). In the past two years,

hiPSC models have been successfully established for

both SAD and FAD caused by PS1 mutation (A246E

[55�]/L166P [64]) or PS2 mutation (N141I) [55�] or APP

gene duplication (APPDp) [65��,66] (Table 2). All of these

iPSCs are able to differentiate into neuronal or glial cells,

recapitulating features of AD to different extents. The

neurons derived from FAD–iPSCs with PS1 or PS2

mutations showed increased Ab42 secretion, which was

sharply reduced by treatment with g-secretase inhibitors

[55�,64,66]. Using iPSC-derived AD neurons, Israel et al.
reported some new AD-related phenotypes including the

presence of aberrant early endosomes and elevated

GSK3b activity. Of importance, they reasoned that it

was primary products of APP processing rather than

the previously conceived end product Ab that drove

tau phosphorylation and aggregation [65��]. Additionally,

other diseases frequently accompany AD. Recently, cor-

tical neurons derived from iPSCs from a Down syndrome

patient showed enhanced hyperphosphorylated tau

protein and secretion of Ab [67]. Comprehensive study

of these diseased neurons with different genetic aber-

rances will result in a better understanding of the disease

mechanisms.

ALS is a fatal neurodegenerative disorder typically affect-

ing people between the ages of 50 and 60, characterized

by the degeneration of upper and lower motor neurons

[68]. Sporadic ALS (SALS) and familial ALS (FALS)

demonstrate similar pathological features, including the

atrophy of dying motor neurons, intracytoplasmic

abnormalities of neurofilaments and the formation of

Bunina bodies. Mutations of the superoxide dismutase
ing-related disorders, Curr Opin Cell Biol (2012), http://dx.doi.org/10.1016/j.ceb.2012.08.014
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1 (SOD1) gene are the most well studied causative gene,

making up for about 20% of FALS, while mutations of

two other genes, FUS/TLS and TDP-43, make up for

about 5–10% [69]. hiPSC-derived neurons provide a

potential experimental system to study motor neuron

degenerative disorders (Table 2). Initially, human

embryonic stem cell (hESC)-derived motor neurons over-

expressing three different mutations (G93A, A4V, and

I113T) of SOD1 were obtained, demonstrating character-

istics of ALS-related degeneration such as expansive

neural cell death and decreased neurite extension [70].

Further, the Dimos and Bilican groups generated ALS-

specific iPSCs from two patients bearing SOD1 (L144F)

and TDP-43 (M337V) mutations respectively [38�,71].

For the former, ALS iPSCs could be effectively differ-

entiated into mature motor neurons and glia, although no

obvious ALS-related phenotypes were identified. For the

latter, TDP-43 mutated motor neurons displayed elevated

vulnerabilities toward PI3K pathway blocking, consistent

with motor neuron degeneration in ALS. Taken together,

ALS, despite its aging-dependent penetrance, can be

modeled in a dish in an accelerated way.

Conclusions and perspectives
Human aging is a progressive process resulting in gradual

defects of the genome, epigenome, and molecular and

organelle hemostasis in different cells and tissues. Repro-

gramming toward pluripotency enables resetting of the

cellular clock and removal of most, if not all, of the aging-

associated cellular hallmarks [72��,73,74]. So far, almost

all types of aged or diseased iPSCs can be generated, even

in certain cases where reprogramming was previously

thought to be impossible [72��,75]. These iPSCs, there-

fore, hold the potential to recapitulate phenotypes of

various aging-related diseases (Figures 1 and 2). Instead

of the several decades needed for human physiological

aging, a period of only days or months is needed before

cell aging and disease phenotypes are displayed in culture

conditions, probably due to a complex interplay between

endogenous genetic defects and suboptimal culture sys-

tems.

To obtain appropriate culture conditions that can

induce aging-related phenotypes, extended culture

time is usually a required condition. However, optim-

ization of ‘pro-aging medium’ could be a catalyst for

enabling successful recapitulation of aging-associated

features. In some cases, supplementation in culture

with aging-associated stresses, such as oxidative stress

inducers, DNA damaging agents, or proteasome inhibi-

tors, could be a better way. Apart from the proven

feasibility of modeling aging-related diseases in a dish,

other approaches, including developing hiPSC-derived

organs in vitro [76,77��,78,79] or animals integrated with

hiPSC derivatives [80��,81], could be superior strategies

for obtaining closer physiological settings for disease

modeling. Therefore, by utilizing hiPSC disease
Please cite this article in press as: Liu G-H, et al.: iPSC technology to study human aging and ag
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models, we can not only gain insight into the molecular

mechanisms of human aging, but also create an unpre-

cedented platform for developing novel drugs to realize

healthy aging and prevent or cure various aging-related

diseases. Even more attractive is the potential to com-

bine gene-targeting technologies [32��,53��,82] with

patient-derived iPSCs and their derivatives to obtain

corrected, safe and advanced transplantation materials

for treatment of aging-related degenerative disorders in

the future.
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